Doped Polymers as Third-Order Nonlinear-Optical Materials

1990 ◽  
Vol 214 ◽  
Author(s):  
Mark. G. Kuzyk ◽  
U. C. Paek ◽  
Carl W. Dirk ◽  
Mark P. Andrews

ABSTRACTRecently, there has been much interest in doped polymeric materials owing to their suitability for optical device applications.[1] While most of this effort has been centered on poled polymers and their applications to electrooptics, doped polymers are beginning to emerge as a promising material class for all-optical device applications. In this contribution, we discuss the status of doped polymers as third-order optical materials. Particular attention is focused on those properties that make doped polymers attractive as device materials such as optical nonlinearity and loss and their suitability for nonlinear-optical fiber devices.

2019 ◽  
Vol 49 (1) ◽  
pp. 454-463
Author(s):  
R. U. Mullai ◽  
D. Sivavishnu ◽  
R. ArulJothi ◽  
G. Vinitha ◽  
S. Gopinath ◽  
...  

1989 ◽  
Vol 175 ◽  
Author(s):  
S. R. Marder ◽  
J. W. Perry ◽  
W. P. Schaefer ◽  
E. J. Ginsburg ◽  
C. B. Gorman ◽  
...  

AbstractNew approaches to both second-order and third-order nonlinear optical materials are presented. A series of organometallic and organic salts, in which the cation has been designed to have a large molecular hyperpolarizability, has been prepared and the SHG efficiencies were measured. Partially substituted derivatives of polyacetylene are synthesized via the ring-opening metathesis polymerization (ROMP) of cyclooctatetraene (COT) and its derivatives. Certain poly-COT derivatives afford soluble, highly conjugated polyacetylenes. These materials exhibit large third-order optical nonlinearities and low scattering losses.


Author(s):  
Min Li ◽  
Cong Wang ◽  
Lude Wang ◽  
Han Zhang

The rapid development of photonic devices requires the exploration of novel materials with superior nonlinear optical (NLO) properties. Colloidal semiconductor nanocrystals (NCs) exhibit size-tunable exciton resonances and excellent NLO properties....


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Zhihao Zhang ◽  
Pengchao Li ◽  
Yuzong Gu

It is significant to study the reason that semiconductor material has adjustable third-order optical nonlinearity through crystal form and dimensions are changed. αMnS nanoparticles with different crystal forms and sizes were successfully prepared by one-step hydrothermal synthesis method and their size-limited third-order nonlinear optical property was tested by Z-scan technique with 30 ps laser pulses at 532 nm wavelength. Nanoparticles of different crystal forms exhibited different NLO (nonlinear optical) responses. γMnS had stronger NLO response than αMnS because of higher fluorescence quantum yield. Two-photon absorption and the nonlinear refraction are enhanced as size of nanoparticlesreduced. The nanoparticles had maximum NLO susceptibility which was 3.09 × 10−12 esu. Susceptibility of αMnS increased about nine times than that of largest nanoparticles. However, it was reduced when size was further decreased. This trend was explained by the effects of light induced dipole moments. And defects in αMnS nanoparticles also had effect on this nonlinear process. MnS nanoparticles had potential application value in optical limiting and optical modulation.


2021 ◽  
Author(s):  
RA sharath ◽  
K Mani rahulan ◽  
N Angeline Little Flower ◽  
annie sujatha ◽  
g vinitha ◽  
...  

Abstract We report the third order nonlinear optical properties of Er3+-doped BaMoO4 nanostructures, and its dependence on Er dopant concentration. BaMoO4 nanostructures with different concentration of Er were synthesized by chemical precipitation method and were characterized by UV-Vis absorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and fluorescence measurements. The incorporation of Er ions shifted the absorption band of BaMoO4 towards higher wavelength and enhanced the light absorption in the visible region. XRD patterns showed that the powders crystallize in scheelite-type tetragonal structure. The nonlinear optical behavior of the nanostructures was investigated by a Z-scan technique at 532 nm using continuous wave Nd:YAG laser. Experimental results suggested that the addition of Er can considerably enhance the nonlinear absorption and refractive index coefficients of BaMoO4 which could be used as a potential for nonlinear optical device applications.


Author(s):  
Larry Dalton ◽  
Philip Sullivan ◽  
Alex Jen

Sign in / Sign up

Export Citation Format

Share Document