A New Class of Permanent Magnets - High Temperature Superconductors

1991 ◽  
Vol 232 ◽  
Author(s):  
In-Gann Chen ◽  
Jay Liu ◽  
Roy Weinstein

ABSTRACTFor type II superconductors (SC), magnetic field can be trapped, or pinned due to persistent internal current. Upon magnetization, SC samples behave in some ways similar to a metallic permanent magnet. The trapped field is high and quasi-persistent, and we refer to it as a “magnet replica”. So far, nearly 1T @ 65 K, and over 0.4 T @ 77 K have been measured within small (about 1 × 1 × 0.6 cm3) melt-textured Yba2Cu3Ox (MT-Y123) samples. Based on our theoretical studies, extrapolation to larger scale magnets indicates that 2–4 Tesla in liquid Nitrogen (and even larger field at lower temperatures) is achievable with our high temperature superconductor (HTS) material. Using this effect, magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for HTS wires. Two types of motors have been successfully constructed, using the trapped field in MT-Y123 samples.The spatial distribution of the trapped magnetic field on MT-Y123 materials has been studied. A phenomenological model has been developed to account for the trapped field intensity and profile in HTS samples. General features of magnet replicas by HTS will also be discussed.

2021 ◽  
Vol 11 (6) ◽  
pp. 2741
Author(s):  
Sergey Zanegin ◽  
Nikolay Ivanov ◽  
Vasily Zubko ◽  
Konstantin Kovalev ◽  
Ivan Shishov ◽  
...  

The article is devoted to the study of losses in devices based on high-temperature superconductors of the 2nd generation. The complexity of the devices under study increases from a single rack coil to a winding assembled from several coils, and finally to an electric machine operating in generator mode. This is the way to experimentally study the behavior of 2nd generation high temperature superconductor (2G HTS) carrying a transport current in various conditions: self-field, external DC, and AC magnetic field. Attention is also paid to the losses in the winding during its operation from the inverter, which simulates the operating conditions in the motor mode of a propulsion system.


2019 ◽  
Vol 5 (4) ◽  
pp. 115-123
Author(s):  
Yuri F. Antonov

The superconducting levitation device comprises a stationary magnetic rail of permanent magnets and a cryostat on a vehicle with a second-generation high-temperature tape superconductor placed in the cryostat, folded in a stack or wound by a coil on a non-magnetic frame without electrical connection of the ends and the transport current. Cool tape high-temperature superconductor of the second generation, folded in a stack or wound on a non magnetic frame in the form of axisymmetric or track coil, without electric connections of the ends and a transport current, behaves as a massive sample of a superconductor and the Meissner Oxenfeld effect, the magnetic field created by the magnetic rail is displaced from the volume of the superconductor, causing the power of levitation and the vehicle hangs over the track structure. The high critical parameters of the second-generation high-temperature superconductor belt ensure efficient operation of the superconducting levitation device. Aim: To demonstration the technical feasibility and efficiency of creating a levitation unit based on the use of a second-generation high-temperature superconductor and permanent magnets made of rare earth metals. Methods: Calculations of the magnetic field distribution in the combination of a magnetic rail and a massive superconductor, preliminary design of the levitation unit and experimental studies on the model. Results: Experiments on a model of a superconducting levitation device confirmed the efficiency of this technical solution and its effectiveness. Conclusion: an original technical solution is proposed that allows to significantly improve the energy characteristics of the levitation node by using a second-generation high-temperature superconductor operating in a passive mode without a transport current, using the partial Meissner-Oxenfeld effect and the engagement of quantized magnetic flux strands at the pinning centers.


2011 ◽  
Vol 291-294 ◽  
pp. 1251-1254
Author(s):  
Ming Liang Zhang ◽  
Yong Lu ◽  
Dong Gao

Flux pinned effect (FPE) takes place in high-temperature superconductors (HTSC) when being cooled below critical temperature in magnetic field and appears the self-stable with resisting the disturbing and recovering the initial equilibrium position , even in the failure of control, which is ideal for the activities of spacecraft. In order to investigate the special phenomenon, the image-dipole model (IDM) for interaction and spring-damper model (SDM) for system are adopted in this paper. IDM are based on two assumed images and SDM linked with flux-pinned interface is based on virtual spring and damper. Two models effectively deal with the flux-pinning and give some clear expressions. When moving along single orient, this paper demonstrates the pairs’ self-stability based on two models.


2015 ◽  
Vol 1 (2) ◽  
pp. 49-61 ◽  
Author(s):  
Dmitry Maksimovic Filippov

In recent years increasingly discusses the prospects of application of high-temperature superconductors (HTS) as the winding current-carrying elements of magnetic systems for various purposes. It seems particularly attractive possibility of such systems at liquid nitrogen temperature. The article describes the prototype of module of the magnetic system which is made on the basis of high-temperature superconducting tapes, designed for the installation and testing on a working model of a static levitation. In the working model levitation of the platform carried by the interaction of the magnetic field of the assembly of permanent magnets mounted on the platform with a field similar to assemblies located in the track structure. Compact HTS module replaces the two assemblies of permanent magnets mounted on the platform. Each block of the module represents HTS racetrack coil with current inputs, power structure, positioning system and bracing which is placed in a cryostat, providing at minimum wall thickness of the required mechanical strength and thermal insulation at liquid nitrogen temperature. The prototype of unified superconducting module successfully passed preliminary tests.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


1994 ◽  
Vol 49 (22) ◽  
pp. 15813-15829 ◽  
Author(s):  
B. Plaçais ◽  
P. Mathieu ◽  
Y. Simon

2010 ◽  
Vol 234 (1) ◽  
pp. 012023 ◽  
Author(s):  
Gregory P Lousberg ◽  
J-F Fagnard ◽  
M Ausloos ◽  
Ph Vanderbemden ◽  
B Vanderheyden

2017 ◽  
Vol 31 (25) ◽  
pp. 1745001 ◽  
Author(s):  
Qiudong Guo ◽  
Peng Zhang ◽  
Lin Bo ◽  
Guibin Zeng ◽  
Dengqian Li ◽  
...  

With the rapid development of manufacturing technology of high temperature superconductive YB[Formula: see text]Cu3O[Formula: see text] YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.


Sign in / Sign up

Export Citation Format

Share Document