A Comparison of AFM, SEM, and TEM Analysis of AL/SI/CU Thin Films

1992 ◽  
Vol 260 ◽  
Author(s):  
K. L. Westra ◽  
D. J. Thomson

ABSTRACTAtomic Force microscopy, scanning electron microscopy, and transmission electron microscopy was used to study Al/Si/Cu films sputter deposited at 2 and 45 mTorr. AFM and SEM analysis shows the films to consist of columnar structures commonly seen in PVD deposited thin films, while the TEM analysis showed the films be polycrystalline. Comparing the columnar structures seen in the AFM and SEM study to the grains found in the TEM study, we conclude that the columns consist of single grains. Thus for these films AFM or SEM analysis can be used to determine the grain size. Finally, an AFM scan of a Al/Si/Cu deposited via was performed. The AFM image clearly shows the high resolution of the AFM, while it also illustrates the problems caused by the finite size of the AFM tip.

2019 ◽  
Vol 286 ◽  
pp. 49-63
Author(s):  
Dwight Acosta ◽  
Francisco Hernández ◽  
Alejandra López-Suárez ◽  
Carlos Magaña

WO3:Mo and WO3:Ti thin films have been deposited on FTO/Glass substrates by the pulsed chemical spray technique at a substrate temperature of Ts= 450°C. The influence of Mo and Ti doping on the structural, electrical, and optical behavior of WO3thin films, has been studied by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Ultra Violet and Visible Spectrometry (UV-VIS), and Surface Conductivity Methods (Four Points). Doped WO3films presents similar polycrystalline structures but with noticeable modifications in surface configurations at micrometric and nanometric levels, as the Mo and Ti concentration is systematically increased in the starting sprayed solution. From processed High-Resolution Electron Micrographs (HREM), a low density of structural defects was found on pure and doped WO3grains. This lead to conclude that variations in films surface characteristics are mainly related with metallic doping concentrations which in turn, have noticeable influence in electrical and optical behaviors reported in this work.


1996 ◽  
Vol 436 ◽  
Author(s):  
Cengiz S. Ozkan ◽  
William D. Nix ◽  
Huajian Gao

AbstractHeteroepitaxial Si1-xGex. thin films deposited on silicon substrates exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. In these films, surface roughening can take place in the form of ridges which can be aligned along <100> or <110> directions, depending on the film thickness. In this paper, we investigate this anisotropic dependence of surface roughening and present an analysis of it. We have studied the surface roughening behaviour of 18% Ge and 22% Ge thin films subjected to controlled annealing experiments. Transmission electron microscopy and atomic force microscopy have been used to study the morphology and microstructure of the surface ridges and the dislocations that form during annealing.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


2008 ◽  
Vol 74 (17) ◽  
pp. 5457-5465 ◽  
Author(s):  
Oleg Stukalov ◽  
Anton Korenevsky ◽  
Terry J. Beveridge ◽  
John R. Dutcher

ABSTRACT Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.


2001 ◽  
Vol 16 (6) ◽  
pp. 1626-1631 ◽  
Author(s):  
A. Karthikeyan ◽  
Rui M. Almeida

An investigation of phase separation phenomena in gel and glassy thin films of silica–titania, with TiO2 contents of 20 and 40 mol%, has been carried out by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The thin films were prepared by spin coating of a precursor sol on silicon wafers. Both the TEM measurements (carried out on scrapped thin film flakes) and the AFM measurements (carried out on films coated on the silicon substrates) for samples with different heat treatments suggest that spinodal-like structural inhomogeneities occur in these samples, unlike the corresponding observations in pure silica films, which are known to be homogeneous. Changes in the microstructure of the films have been noticed with the thermal treatment, in agreement with earlier x-ray photoemission studies. The finer characteristic dimensions of the phase separated regions reveal that silica–titania samples prepared by sol-gel processing exhibit a more intimate mixing of the phases.


2008 ◽  
Vol 1129 ◽  
Author(s):  
S Ganti ◽  
Y Dhopade ◽  
R K Gupta ◽  
K Ghosh ◽  
P K Kahol

AbstractThin films based on nano-composites have attracted considerable attention for their possible applications in devices and sensors. These nano-composite thin films are formed by embedding metal or semiconductor nano-particles in a host material and they exhibit interesting electrical transport properties. Using pulsed laser deposition technique, we have prepared nano-composite thin films of gold-strontium titanate on quartz substrate. Gold and strontium titanate were used as targets for pulsed laser deposition. Thin films having different compositions were grown. The effect of different composition on their electrical and optical properties has been studied in details. The structural characterizations of the films were done by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Transmission electron microscopy as well as atomic force microscopy shows the presence of gold nano-particles in these films. X-ray diffraction and energy dispersive x-ray spectroscopy shows the existence of strontium titanate and gold. Current-voltage characteristics and temperature dependent resistivity measurements were made to characterize electrical properties of these films. Electrical properties can be manipulated from metal to insulator through semiconductor by varying the composition. In addition, it is observed that the absorption of visible light increases with increase in gold percentage. This indicates that these nano-composites could also use as active materials for many electronic as well as optical sensors.


2021 ◽  
Vol 11 ◽  
pp. 184798042110113
Author(s):  
Huda Abdullah ◽  
Seri Mastura Mustaza ◽  
Siti Khairani Bejo ◽  
Iskandar Yahya ◽  
Noorfazila Kamal ◽  
...  

Leptospirosis disease was caused by rat urine which contains the genus Leptospira bacteria. In this study, the fabrication of Pd-Fe-doped polyaniline nanocomposite thin films for the determination of the genus Leptospira bacteria thin films has been investigated. Pd-Fe-doped polyaniline nanocomposite thin films were fabricated by sol–gel spin coating method. The electrode sensors were immersed in the Leptospira solution. The resulting materials were investigated using field-emission scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and current–voltage measurement. The atomic force microscopy images show the specific morphology films’ structure for Leptospira detection, whereas the field-emission scanning electron microscopy image shows the irregularity of clump nanoparticles in thin film surfaces. Transmission electron microscopy result shows that metal alloy (Fe-Pd) embedded in the polymer matrix. Current–voltage measurement with and without incubation of the thin film into Leptospira solution was done to show the relationship between concentration bacteria versus current. The result shows that polyaniline-Fe0.4-Pd0.6 nanocomposite thin film has higher sensitivity in detecting Leptospira, where it has performed with the highest percentage of the sensitivity of 16.9%. Besides that, selectivity tests were conducted to distinguish the existence of Leptospira, Pseudomonas aeruginosa, and Staphylococcus aureus bacteria. These results confirm the potentials of polyaniline metal alloys’ nanocomposite thin films to be used for Leptospira bacteria detection in water.


1998 ◽  
Vol 528 ◽  
Author(s):  
R. Loloee ◽  
M.A. Crimp ◽  
W. Zhu ◽  
W.P. Pratt

AbstractEpitaxial single crystal Nb films have been grown by sputter deposition on (1 1 2 0) sapphire substrates. Subsequently, high quality epitaxial Cu films, with two orientation variants, have been grown onto the epitaxial Nb films. The sputtered films have been characterized using atomic force microscopy, electron backscattered patterns, and conventional transmission electron microscopy.


2011 ◽  
Vol 687 ◽  
pp. 610-616 ◽  
Author(s):  
Yen Lin Huang ◽  
Ying Chieh Lee ◽  
Du Cheng Tsai ◽  
Fuh Sheng Shieu

Thin films of zinc titanate (ZnTiO3) can be produced on Si(100) substrates at room temperature by DC reactive magnetron co-sputtering with Ti, Zn as the target and O2 as a reactive gas. In this work, the influence of annealing temperature (500–900 °C) on microstructure and formation of ZnTiO3 thin films were investigated. The samples are characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, electron spectroscopy for chemical analysis. As-deposited films have an amorphous columnar structure. The crystallization phenomenon was observed with annealing temperature of 500 °C. After 600 °C 2 h annealing, crystalline phase with ZnTiO3 (hexagonal) and TiO2 (rutile) could be obtained and coexisted. Furthermore, the unit cell size of the ZnTiO3 and TiO2 crystal is a = ~5.062 Å, c = ~ 13.87 Å and a = ~4.58 Å, c = ~ 2.95 Å.


Sign in / Sign up

Export Citation Format

Share Document