scholarly journals Sol-Gel Coatings for Electrochromic Devices

1992 ◽  
Vol 276 ◽  
Author(s):  
M. A. Macedo ◽  
L. H. Dall'Antonia ◽  
M. A. Aegerter

ABSTRACTAll solid state electrochromic smart windows with the configuration glass/ITO/WO3/electrolyte/TiO2-CeO2/ITO/glass have been realized. These devices have potential applications in architectural and automotive fields to regulate the transmission and reflection of the radiant energy. The ion storage electrode TiO2–CeO2 have been realized by sol-gel process and its electrochemical properties are studied as a function of various parameters (thickness, heat treatment, etc.). The electrochemical and optical performances of two cells are reported.

2018 ◽  
Vol 768 ◽  
pp. 211-217 ◽  
Author(s):  
Rui Wang ◽  
Yu Kun Sun ◽  
Bao Jia Qi Jiang ◽  
Hui Yang ◽  
Xing Zhong Guo

Macroporous Ca12Al14O33(C12A7) mayenite monoliths have been successfully prepared via a sol-gel process in the presence of propylene oxide (PO) and poly (ethyleneoxide) (PEO). Gelation of CaO-Al2O3binary system with nitrates salts as additional precursors is accelerated by PO as an acid scavenger, while PEO works as a phase separation inducer to mediate the phase separation of the system. Appropriate PO and PEO amounts allow the formation of monolithic xerogel with interconnected macropores and co-continuous skeletons. The resultant dried gels are amorphous and the single crystalline phase Ca12Al14O33mayenite forms after heat-treatment at 1100 °C in air, while the macrostructure is preserved with a porosity as high as 78% and smoother and denser skeletons.


1999 ◽  
Vol 67 (12) ◽  
pp. 1243-1248 ◽  
Author(s):  
Keiji WATANABE ◽  
Masatoshi SAKAIRI ◽  
Hideaki TAKAHASHI ◽  
Katsumi TAKAHIRO ◽  
Shinji NAGATA ◽  
...  

2021 ◽  
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
A Moutcine

Abstract Recently, the rise of two dimensional amorphous nanostructured thin films have ignited a big interest because of their intriguingly isotropic structural and physical properties leading to potential applications in the nano-optoelectronics. However, according to literature, most of optoelectronic properties are investigated on chalcogenides related heterostructures. This has motivated the present work aiming to provide a new platform for the fabrication, examination of the properties and the applications of 2D nanostructured thin films based on epoxy/silicone blend. Thin films of Epoxy/Silicone loaded with nitrogen doped carbon nanotubes (N-CNTs) were prepared by sol-gel method and deposited on Indium Tin Oxide (ITO) glass substrates at room temperature. Further examination of optical properties aimed the investigation of optical pseudo-gap and Urbach energy and enabled the determination of processed films thickness based on Manifacier and Swanepol method. The results indicated that the unloaded thin films have a direct optical transition with a value of 3.61 eV followed by noticeable shift towards narrowing gaps depending on the loading rate. Urbach's energy is 0.19 eV for the unloaded thin films, and varies from 0.43 to 1.33 eV for the loaded thin films with increasing the rate of N-CNTs. It is inversely variable with the optical pseudo-gap. Finally, Epoxy/Silicone loaded with N-CNTs nanocomposites films can be developed as active layers with specific optical characteristics, giving the possibility to be used in electro-optical applications.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3513 ◽  
Author(s):  
Mariana Fernandes ◽  
Vânia Freitas ◽  
Sónia Pereira ◽  
Rita Leones ◽  
Maria Silva ◽  
...  

To address the challenges of the next generation of smart windows for energy-efficient buildings, new electrochromic devices (ECDs) are introduced. These include indium molybdenum oxide (IMO), a conducting oxide transparent in the near-infrared (NIR) region, and a NIR-emitting electrolyte. The novel electrolytes are based on a sol-gel-derived di-urethane cross-linked siloxane-based host structure, including short chains of poly (ε-caprolactone) (PCL(530) (where 530 represents the average molecular weight in g mol−1). This hybrid framework was doped with a combination of either, lithium triflate (LiTrif) and erbium triflate (ErTrif3), or LiTrif and bisaquatris (thenoyltrifluoroacetonate) erbium (III) ([Er(tta)3(H2O)2]). The ECD@LiTrif-[Er(tta)3(H2O)2] device presents a typical Er3+ NIR emission around 1550 nm. The figures of merit of these devices are high cycling stability, good reversibility, and unusually high coloration efficiency (CE = ΔOD/ΔQ, where Q is the inserted/de-inserted charge density). CE values of −8824/+6569 cm2 C−1 and −8243/+5200 cm2 C−1 were achieved at 555 nm on the 400th cycle, for ECD@LiTrif-ErTrif3 and ECD@LiTrif-[Er(tta)3(H2O)2], respectively.


2005 ◽  
Vol 284-286 ◽  
pp. 757-760 ◽  
Author(s):  
Marivalda Pereira ◽  
Showan N. Nazhat ◽  
Julian R. Jones ◽  
Larry L. Hench

The possibility of enhancing mechanical properties by incorporation of polymeric components to sol-gel derived materials is extremely attractive to prepare macroporous scaffolds, leading to materials with potential applications in both hard and soft tissue regeneration. In this work bioactive glass-polyvinyl alcohol hybrids were developed and their mechanical behavior was evaluated. Hybrids were synthesized by adding polyvinyl alcohol to a sol-gel precursor solution, which was then foamed with the addition of a surfactant and vigorous agitation. The foams were cast, aged and dried at 40°C. A cleaning step to decrease the acidic character of the obtained hybrids was undertaken by immersion in a NH4OH solution. The mechanical behavior of the hybrids was evaluated in compression using both stress and strain control tests. Hybrid foams had a high porosity varying from 60-90% and the macropore diameter ranged from 10 to 600 µm. The modal macropore diameter varied with the inorganic phase composition and with the polymer content in the hybrid. The strain at fracture of the as prepared hybrid foams was substantially greater than pure gel-glass foams. The cleaned hybrids presented a slightly higher strength and lower deformation than the as prepared foams.


2014 ◽  
Vol 936 ◽  
pp. 975-980 ◽  
Author(s):  
Kai Lin Fu ◽  
Wei Hui Jiang ◽  
Guo Feng ◽  
Jian Min Liu ◽  
Qian Wu ◽  
...  

Mullite whisker was prepared at low temperature via non-hydrolytic sol-gel (NHSG) process combined with molten salt method. The influence of heat treatment temperature was studied on the morphology and the microstructure of whisker, and its growth mechanism was also described. The results show that the mullite whisker appears at the lowest temperature of 750 °C, and optimized mullite whisker can be prepared at 850 °C with the growth direction of [00, whose diameter is in the range of 170~300 nm with the aspect ratio of >30.


2009 ◽  
Vol 620-622 ◽  
pp. 651-654
Author(s):  
Leticia M. Torres-Martínez ◽  
Cecilia Sánchez-Trinidad ◽  
Vicente Rodríguez-González ◽  
Ricardo Gómez

Indium-alkali microfibers doped ceramic were prepared by the sol-gel process. The gels preparation samples, were heat treated at 700°C for different length of time. The products were characterized by means of XRD, SEM-EDS and UV–Vis-DRS. The XRD showed the formation of the Na2Ti6O13 phase whose crystallinity depends on the annealing time. The band gap calculated from the UV–Vis Kubelka-Munk function shows very similar values (3.53-3.55 eV). The SEM images of the indium-alkali titanates show microfiber clumps morphologies of about 5 µm, and the EDS spectra show that In2O3 is on the Na2Ti6O13 surface. The results of the evaluation of the In-Na2Ti6O13 semiconductors in the 2, 4-dichlorophenoxyacetic acid (2, 4-D) photodecomposition under UV light irradiation, show that the photoactivity depends on the time of heat treatment of the samples.


2012 ◽  
Vol 512-515 ◽  
pp. 1686-1689
Author(s):  
Jie Chen ◽  
Le Fu Mei ◽  
Li Bing Liao

In this paper, porous carbon has been used to carry TiO2 and TiO2-N by a sol-gel process. The effect of soaking time, heat treatment temperature, and heat treatment time on the carrying efficiency have been studied. XRD experiments indicated that TiO2 and TiO2-N crystallized in anatase and rutile with the ratio of 3∶2. SEM images showed that island-like TiO2 and TiO2-N particles with diameters in the range of 1-5um, the biggest size is about 10um, were evenly coated on the surface of the porous carbon.


2014 ◽  
Vol 38 (12) ◽  
pp. 5832-5839 ◽  
Author(s):  
Xingzhong Guo ◽  
Xiaobo Cai ◽  
Jie Song ◽  
Yang Zhu ◽  
Kazuki Nakanishi ◽  
...  

Monolithic mayenite has been successfully prepared via a sol–gel process followed by heat-treatment, exhibiting co-continuous macroporous structure and high porosity.


Sign in / Sign up

Export Citation Format

Share Document