scholarly journals Trim Simulations and Possible Studies for Edge-on Ion Irradiation of Electron Microscope Specimens

1992 ◽  
Vol 279 ◽  
Author(s):  
Loren J. Thompson ◽  
Charles W. Allen ◽  
Marcus C. Frischherz ◽  
Mauro P. Otero

ABSTRACTA TRIM code [1] has been modified to simulate a special technique, first described at the Spring 92 MRS Meeting [2], for in situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen without further specimen preparation. Instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in essentially the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction of the irradiation. The results of calculations utilizing the modified TRIM code are presented for cases of 200 and 500 keV Co impinging onto the edge of Si films 200 and 600 nm thick. The limitations of the technique are discussed and the feasibility of experiments involving implantation of Co into Si and the formation of COSi2, which employ this technique, are briefly discussed.

1992 ◽  
Vol 268 ◽  
Author(s):  
Mauro P. Otero ◽  
Charles W. Allen

ABSTRACTA special technique is described for in situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen. That is, instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction with respect to the irradiation. The results of amorphization of Si, irradiated in this orientation by 1 or 1.5 MeV Kr, are presented and briefly compared with the usual plan view observations. The limitations of the technique are discussed and several experiments which might profitably employ this technique are suggested.


2000 ◽  
Vol 650 ◽  
Author(s):  
A. Meldrum ◽  
K. Beaty ◽  
L. A. Boatner ◽  
C. W. White

ABSTRACTIrradiation-induced amorphization of Cd2Nb2O7 pyrochlore was investigated by means of in-situ temperature-dependent ion-irradiation experiments in a transmission electron microscope, combined with ex-situ ion-implantation (at ambient temperature) and RBS/channeling analysis. The in-situ experiments were performed using Ne or Xe ions with energies of 280 and 1200 keV, respectively. For the bulk implantation experiments, the incident ion energies were 70 keV (Ne+) and 320 keV (Xe2+). The critical amorphization temperature for Cd2Nb2O7 is ∼480 K (280 keV Ne+) or ∼620 K (1200 keV Xe2+). The dose for in-situ amorphization at room temperature is 0.22 dpa for Xe2+, but is 0.65 dpa for Ne+ irradiation. Both types of experiments suggest a cascade overlap mechanism of amorphization. The results were analyzed in light of available models for the crystalline-to-amorphous transformation and were compared to previous ionirradiation experiments on other pyrochlore compositions.


1987 ◽  
Vol 115 ◽  
Author(s):  
T. Boone ◽  
S. Nakahara

ABSTRACTA technique for observing both plan view and cross sections of a specimen directly in a transmission electron microscope (TEM) without relying on a tedious thinning operation was developed. This technique involves cleaving a specimen perpendicular to the plane, so that the thin (electron transparent) section of the cleaved edge can be directly imaged by TEM. The only limitations of this technique are that a specimen must be readily criacked or cleaved and that, since the transparent region is often bounded by a 90° corner, the extent of electron transparent region is somewhat localized. Nevertheless, the technique has the advantages of the ease of specimen preparation, and the absence of contamination or damage introduced in other conventional thinning methods. The geometry of the cleaved specimen is also suitable for reflection electron microscopy.


1990 ◽  
Vol 187 ◽  
Author(s):  
James S. Im ◽  
Harry A. Atwater

AbstractThe nucleation and transformation kinetics of the amorphous-to-crystal transition in Si films under 1.5 MeV Xe+ irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T = 480–580°C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting homogeneous nucleation. A significant enhancement in nucleation rate during high energy ion irradiation (6 orders of magnitude) was observed as compared with thermal crystallization, with an apparent activation energy of Qn = 3.9 ± 0.75 eV. Independent analyses of the temperature dependence of the incubation time, the crystal growth rate, and nucleation rate suggest that interface rearrangement kinetics and not the thermodynamic barrier to crystallization, are affected by ion irradiation.


Author(s):  
R. Hull ◽  
A.E. White ◽  
K.T. Short ◽  
S.M. Yalisove ◽  
D. Loretto

A new technique for synthesis of buried epitaxial metal silicide layers in Si (“mesotaxy”) by high-dose implantation of Co and Ni into Si surfaces has been developed. Subsequent to implantation at energies in the few hundred keV range and doses in the 1017Cm−2 regime, thermal annealing at temperatures up to 1000°C results in the formation of well-defined and relatively high quality Si/metal disilicide/Si structures.The exact implantation and processing conditions are crucial in determining the structure and quality of the buried silicide layer. In this work, we describe transmission electron microscope experiments which illuminate the silicide formation process both by static studies of as-implanted and annealed structures, and dynamical in-situ experiments where as-implanted structures are annealed inside the microscope to mimic the ex-situ annealing conditions. The structure geometry in these materials turns out to be close to ideal for such in-situ experimentation: typical implantation conditions for formation of a contiguous silicide layer result in tlqe metal layers being of the order a few hundred to a thousand Å and buried about 600-1000 Å below the Si surface. In-situ annealing in the plan-view geometry inhibits surface diffusion across the interfaces, which would be expected in the cross-sectional geometry (5). The typical penetration depths attainable in Si with 200 keV electrons, say ~ 1 micron, allow a significant thickness, hsubthin of Si substrate below the metal layer, thickness hm, to be retained during the in-situ experiment such that hm ≪hsubthin. This is important, as it ensures that the film stress condition (which arises because of the difference in bulk lattice parameters between the Si and metal silicide layers) is reasonably representative of the stress conditions relevant for the case of annealing on the unthinned substrate.


1987 ◽  
Vol 115 ◽  
Author(s):  
Eric M. Fiore ◽  
Rodney A. Herring

ABSTRACTWe describe a technique for preparing transmission electron microscope (TEM) cross-sectional specimens for observation during in situ annealing to high temperatures. The process utilizes a ceramic adhesive that is stable to a temperature of 1650°C. The technique, which was successfully used to observe the recrystallization of amorphized silicon, is being applied to high-energy ion-implanted silicon in an attempt to better understand the amorphous-to-crystalline phase transformation and defect formation mechanisms resulting from thermal processing.


Sign in / Sign up

Export Citation Format

Share Document