Selective Growth of Polycrystalline Diamond Thin Films

1992 ◽  
Vol 282 ◽  
Author(s):  
R. Ramesham

ABSTRACTMicrowave plasma assisted CVD is employed to grow diamond films using a gas mixture of H2 and CH4on various substrates. Diamond has a tendency not to nucleate growth on mirror-smooth finished substrates irrespective of the substrate type (except single crystal diamond). We have developed various processes to enhance the nucleation density of the diamond substantially by damaging or seeding the surface of the substrates. Several process techniques such as 1. silicon nitride and silicon dioxide process, 2. ultrasonic agitation process, 3. selective seeding of diamond by electroplating of Cu, 4. patterning of diamond films by air-microwave plasma etching, etc., were developed to achieve the patterns of diamond on various substrates. Selective growth of doped diamond and low temperature growth of diamond for microelectronic applications have also been achieved by using the above processes (1 and 2). Details on selective diamond growth processes and the morphology of as-deposited selective diamond by SEM are presented.

1997 ◽  
Vol 12 (10) ◽  
pp. 2686-2698 ◽  
Author(s):  
L. Fayette ◽  
B. Marcus ◽  
M. Mermoux ◽  
N. Rosman ◽  
L. Abello ◽  
...  

A sequential analysis of the growth of diamond films on silicon substrates in a microwave plasma assisted chemical vapor deposition (CVD) reactor has been performed by Raman spectroscopy. The plasma was switched off during measurements, but the substrate heating was maintained to minimize thermoelastic stresses. The detectivity of the present experimental setup has been estimated to be about a few tens of μmg/cm2. From such a technique, one expects to analyze different aspects of diamond growth on a non-diamond substrate. The evolution of the signals arising from the substrate shows that the scratching treatment used to increase the nucleation density induces an amorphization of the silicon surface. This surface is annealed during the first step of deposition. The evolution of the line shape of the spectra indicates that the non-diamond phases are mainly located in the grain boundaries. The variation of the integrated intensity of the Raman signals has been interpreted using a simple absorption model. A special emphasis was given to the evolution of internal stresses during deposition. It was verified that compressive stresses were generated when coalescence of crystals took place.


2011 ◽  
Vol 1282 ◽  
Author(s):  
Paul W. May ◽  
Yuri A. Mankelevich

ABSTRACTA prerequisite for modelling the growth of diamond by CVD is knowledge of the identities and concentrations of the gas-phase species which impact upon the growing diamond surface. Two methods have been devised for the estimation of this information, and have been used to determine adsorption rates for CxHy hydrocarbons for process conditions that experimentally produce single-crystal diamond, microcrystalline diamond films, nanocrystalline diamond films and ultrananocrystalline diamond films. Both methods rely on adapting a previously developed model for the gas-phase chemistry occurring in a hot filament or microwave plasma reactor. Using these methods, the concentrations of most of the CxHy radical species, with the exception of CH3, at the surface have been found to be several orders of magnitude smaller than previously believed. In most cases these low concentrations suggest that reactions such as direct insertion of C1Hy (y = 0-2) and/or C2 into surface C–H or C–C bonds can be neglected and that such species do not contribute significantly to the diamond growth process in the reactors under study.


1996 ◽  
Vol 441 ◽  
Author(s):  
R. Ramesham ◽  
M. F. Rose

Abstract(a) Polycrystalline diamond films have been grown on cylindrical Mo substrates by hot filament and microwave plasma CVD techniques using a gas mixture of hydrogen and methane. A single hot tungsten filament has been used to demonstrate the growth of adherent diamond films on large cylinders. To our knowledge this is the first report on such large cylindrical substrate (area: 41 cm2 ) using a single filament of active length of 3.75 cm. (b) Polycrystalline diamond films have been deposited by hot-filament technique for the first time using methane and hydrogen at an atmospheric pressure of hydrogen on flat substrates. The diamond growth has been performed at various pressures ranging from 34.5 to 750 Torr. The as-deposited films were analyzed by SEM and Raman to determine morphology and chemical nature, respectively.A. Growth of Diamond Film on Molybdenum Cylinders


1992 ◽  
Vol 7 (6) ◽  
pp. 1432-1437 ◽  
Author(s):  
G.F. Cardinale ◽  
C.J. Robinson

The fracture strength of polycrystalline diamond films deposited by filament assisted chemical vapor deposition in the thickness range of 3.5 to 160 μm is investigated. Using a burst pressure technique, the fracture strengths of circular diamond film specimens are calculated. An average fracture strength of 730 MPa for nine samples was computed. This value is in good agreement with published strengths of microwave plasma deposited diamond films, comparable to other high strength materials, and within an order of magnitude of the fracture strength of bulk natural diamond. The average fracture strength of the fine-grained substrate interface appears consistently higher than that of the coarse-grained diamond growth surface.


Author(s):  
Yang Wang ◽  
Weihua Wang ◽  
Shilin Yang ◽  
Jiaqi Zhu

Diamond is a material with excellent performances which attracts the attention from researchers for decades. Pt (111), owing to its catalytic activity on diamond synthesis, is regarded to be a candidate for diamond hetero-epitaxity, which can enhance nucleation density. Molten surface at diamond growth temperature can also improve mobility and aggregation capability of primitive nuclei. Generally, (100)-oriented is welcomed for the achivement of high quality and large size diamond, since the formation of defects and twins are prevented. First-principle calculations and experimental researches were carried out for the study of transformation of orientation. The transformation from {111} to {100}-oriented diamond has been observed on Pt (111) substrate, which can be promoted by the increase of carbon source concentration and substrate temperature. The process is energetic favorable, which may provides a way towards large-scale (100) diamond films.


1989 ◽  
Vol 162 ◽  
Author(s):  
Y. Liou ◽  
A. Inspektor ◽  
R. Weimer ◽  
D. Knight ◽  
R. Messier

ABSTRACTDiamond thin films were deposited on different substrates at low temperatures (lowest temperature∼ 300°C, estimated) in a microwave plasma enhanced chemical vapor deposition (MPCVD) system. The deposited films were amorphous carbon or diamond films depending on the different gas mixtures used. The growth rate of diamond thin films was decreased by adding oxygen to the gas mixture. The addition of oxygen to the gas mixtures was found to be important for diamond growth at low temperatures. Different concentrations of oxygen have been added into the gas mixture. Without oxygen, the deposited films were white soots and easily scratched off. Increasing the oxygen input improved the quality of the Raman peaks and increased the film transpancy. The diamond films were also characterized by scanning electron microscopy (SEM).


CrystEngComm ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 2138-2146 ◽  
Author(s):  
G. Shu ◽  
V. G. Ralchenko ◽  
A. P. Bolshakov ◽  
E. V. Zavedeev ◽  
A. A. Khomich ◽  
...  

Homoepitaxial diamond growth may proceed with stops and resumptions to produce thick crystals. We found the resumption procedure to take place in a complex way, via a disturbance of step growth features, followed by the recovery after a certain time.


2018 ◽  
Vol 281 ◽  
pp. 893-899 ◽  
Author(s):  
Yi Fan Xi ◽  
Jian Huang ◽  
Ke Tang ◽  
Xin Yu Zhou ◽  
Bing Ren ◽  
...  

In this study, we propose a simple and effective approach to enhance (110) orientation in diamond films grown on (100) Si substrates by microwave plasma chemical vapor deposition. It is found that the crystalline structure of diamond films strongly rely on the CH4 concentration in the nucleation stage. Under the same growth condition, when the CH4 concentration is less than 7% (7%) in the nucleation stage, the diamond films exhibit randomly oriented structure; once the value exceeds 7%, the deposited films are strongly (110) oriented. It could be verified by experiments that the formation of (110) orientation in diamond films are related to the high nucleation density and high fraction of diamond-like carbon existing in nucleation samples.


2002 ◽  
Vol 750 ◽  
Author(s):  
C. Z. Gu ◽  
L. Wei ◽  
Y. Sun ◽  
J. K. Jia ◽  
Z. S. Jin

ABSTRACTNanocrystalline diamond films deposited by microwave plasma chemical vapor deposition (MWPCVD) method were observed on Si substrates implanted with phosphor (P) and boron (B) ions at room temperature via scanning electron microscopy (SEM). The relations between the species, energies and doses of implanted impurities and the nucleation, grain size and morphology of diamond were studied. The results present that different nucleation density from 106 cm-2 to 109 cm-2 can be obtained on implanted and unscratched Si, which is larger of 3–6 magnitude orders than that on mirror-polished Si. The nano-structured diamond films can be deposited on scratched Si substrates implanted by higher concentration of phosphor and boron ions. The grain sizes of nano-structured films can be adjusted by controlling the implanted energies and doses, and nano-structured films can be synthesized with low impressive stress. The Raman spectroscopy was employed to analysis the phase purity of nano-structured film, which shows a broad peak at around 1150 cm-1 relative to the nano-structured and tetrahedrally bonded carbon network.


Sign in / Sign up

Export Citation Format

Share Document