Effects of Microstructure on Photoluminescence of SrS:Eu2+,SM3+ thin Films

1993 ◽  
Vol 301 ◽  
Author(s):  
Susan Z. Hua ◽  
L. Salamanca-Riba ◽  
M. Wuttig ◽  
P. K. Soltani

ABSTRACTThe microstructure and its effects on the photoluminescence properties of SrS:Eu2+,Sm3+ thin films grown with different conditions were studied by transmission electron microscopy, x-ray diffraction and photoluminescence techniques. The SrS:Eu2+,Sm3+ thin films were prepared by e-beam evaporation at different substrate temperatures and growth rates. Both of these growth conditions affect the crystallinity of the thin films. The Sm3+ emission is stronger in the films grown at higher growth rates and at an optimum substrate temperature. We believe that the stronger Sm3+ emission is due to the higher population of Sm trivalent charge states in the films. Further increase of the substrate temperature increases the grain size in the films, but has no significant effect on the PL emission properties. In contrast, the Eu2+ emission is less sensitive to growth conditions.

1993 ◽  
Vol 335 ◽  
Author(s):  
S. Liang ◽  
C. Chern ◽  
Z. Q. Shi ◽  
Y. Lu ◽  
P. Lu ◽  
...  

AbstractStrontium titanate (SrTiO3) thin films have been epitaxially grown on YB2Cu3O7−x (YBCO)/LaAlO3 at substrate temperatures of 660 to 700°C. X-ray diffraction (XRD) results indicated that single crystalline SrTiO3 thin films were epitaxially grown on the substrate with <100> orientation perpendicular to the substrates. The compositions of the films with different growth conditions were examined by Rutherford backscattering spectroscopy (RBS) and energy dispersive x-ray spectroscopy (EDX). The ratio of Sr/Ti is in the range of 0.9 to 1.1 for the films with a thickness of 1000–2000Å. The surface morphology of the films and the interfaces of the SrTiO3/YBCO structure were examined by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Very smooth surface and sharp interface were observed. The superconducting property of the YBCO layer, as measured by ac susceptibility, did not degrade after growth of SrTiO3 film. The dielectric constant as high as 320 was obtained at 100KHz. The leakage current density is less than 1×10−6A/cm2 at 3V operation.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


1992 ◽  
Vol 242 ◽  
Author(s):  
W. J. Meng ◽  
T. A. Perry ◽  
J. Heremans ◽  
Y. T. Cheng

ABSTRACTThin films of aluminum nitride were grown epitaxially on Si(111) by ultra-high-vacuum dc magnetron reactive sputter deposition. Epitaxy was achieved at substrate temperatures of 600° C or above. We report results of film characterization by x-ray diffraction, transmission electron microscopy, and Raman scattering.


2014 ◽  
Vol 32 ◽  
pp. 1460341 ◽  
Author(s):  
Usman Ilyas ◽  
P. Lee ◽  
T. L. Tan ◽  
R. V. Ramanujan ◽  
Sam Zhang ◽  
...  

This study reports the enhanced ferromagnetic ordering in ZnO:Mn nanoparticle thin films, grown at different substrate temperatures using pulsed laser deposition. The optimum growth conditions were deduced from X-ray, photoemission and magnetic measurements. The X-ray measurements reveal that there was an optimum substrate temperature where the thin films showed relatively stronger texture, better crystallinity and lower strain. Substrate temperature tuned the deep level recombination centers in ZnO:Mn , which changed the optical quality by altering the electronic structure. The M-H curves, in the present study, revealed superior ferromagnetic response of 20-nm sized particles in ZnO:Mn thin film grown at a substrate temperature of 450 °C. Ferromagnetic ordering becomes weaker at higher/lower substrate temperatures due to the activation of native defects in ZnO host matrix.


1999 ◽  
Vol 14 (6) ◽  
pp. 2355-2358 ◽  
Author(s):  
M. H. Corbett ◽  
G. Catalan ◽  
R. M. Bowman ◽  
J. M. Gregg

Pulsed laser deposition has been used to make two sets of lead magnesium niobate thin films grown on single-crystal h100j MgO substrates. One set was fabricated using a perovskite-rich target while the other used a pyrochlore-rich target. It was found that the growth conditions required to produce almost 100% perovskite Pb(Mg1/3Nb2/3)O3 (PMN) films were largely independent of target crystallography. Films were characterized crystallographically using x-ray diffraction and plan view transmission electron microscopy, chemically using energy dispersive x-ray analysis, and electrically by fabricating a planar thin film capacitor structure and monitoring capacitance as a function of temperature. All characterization techniques indicated that perovskite PMN thin films had been successfully fabricated.


2014 ◽  
Vol 1061-1062 ◽  
pp. 209-214 ◽  
Author(s):  
Zi Yue Yang ◽  
Li Dong Wang ◽  
Rui Xuan Song ◽  
Dong Xing Zhang ◽  
Wei Dong Fei

Cu (In,Ga)Se2(CIGS) thin films were prepared by direct magnetron sputtering CIGS quaternary target at the substrate temperature varying from room temperature (RT) to 300 °C. The effects of substrate temperature on the structural and electrical properties of CIGS films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Hall effect measurement. The CIGS thin films with a chalcopyrite structure were obtained between 100 and 300 °C and the crystallinity of films were enhanced with the increase of the substrate temperature from 100 to 300 °C. The film compositions were consisted with the target when the substrate temperatures were between RT and 200 °C, however, it deviated from the stoichiometry of the target when the substrate temperature was 300 °C. The CIGS films deposited at 200 °C had the higher carrier mobility of 3.522 cm2/Vs.


1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
R. Chowdhury ◽  
J. Narayan

ABSTRACTLaser physical vapor deposition (LPVD) has been used to deposit thin CoSi2 films on (001)silicon at different substrate temperatures ranging from room temperature to 600°C. Particulate-free silicide thin films were characterized by X-ray diffraction, Rutherford backscattering, and high resolution transmission electron microscopy. We have found that films deposited at 200°C and below are amorphous; 400°C deposited films are polycrystalline whereas films deposited at 600°C are of epitaxial nature. The Effect of subsequent annealing on resistivity of room-temperature deposited thin films has been investigated. The resistivity value decreases to less than 15 μΩcm after annealing making these films suitable for microelectronics applications. The correlation between microstructure and properties of these films are discussed.


1994 ◽  
Vol 359 ◽  
Author(s):  
S. Henke ◽  
K.H. Thürer ◽  
S. Geier ◽  
B. Rauschenbach ◽  
B. Stritzker

ABSTRACTOn mica(001) thin C60-films are deposited by thermal evaporation at substrate temperatures from room temperature up to 225°C. The dependence of the structure and the epitaxial alignment of the thin C60-films on mica(001) on the substrate temperature and the film thickness up to 1.3 μm at a well-defined deposition rate (0.008 nm/s) is investigated by atomic force microscopy and X-ray diffraction. The shape and the size of the C60-islands, which have an influence on the film quality at larger film thicknesses, are sensitively dependent on the substrate temperature. At a film thickness of 200 nm the increase of the substrate temperature up to 225°C leads to smooth, completely coalesced epitaxial C60-thin films characterized by a roughness smaller than 1.5 nm, a mosaic spread Δω of 0.1° and an azimuthal alignment ΔΦ of 0.45°.


2010 ◽  
Vol 152-153 ◽  
pp. 218-221
Author(s):  
Jian Rong Xiao ◽  
Ai Hua Jiang ◽  
Ye Guang Liang

Copper nitride thin films were prepared by reactive radio frequency magnetron sputtering at various substrate temperatures. The surface morphology and crystal structure of the thin films were characterized by atomic force microscope (AFM) and X-ray diffraction (XRD), respectively. The AFM images demonstrate that the films have a compact structure. The XRD test indicates that growth orientation of the thin films prefers the (111) or (100) at different substrate temperature. The optical transmission properties of the thin films were obtained by an ultraviolet visible spectrometer. The optical band gap of the thin films decreases with increasing substrate temperature.


2014 ◽  
Vol 781 ◽  
pp. 95-106 ◽  
Author(s):  
V. Madhavi ◽  
P. Kondaiah ◽  
S. Uthanna

Thin films of Mo (1.3 at.%) doped WO3 films were deposited on glass and ITO coated glass substrates held at substrate temperatures in the range 473 673 K by RF magnetron sputtering technique. The effect of substrate temperature on the structural and morphological, and electrochromic properties of the deposited films were investigated by X-ray diffraction, scanning electron microscope, Raman spectroscope and with electrochemical cell. X-ray diffraction profiles showed that the films formed at substrate temperature of 473 K consisted of weak (020) reflection related to the orthorhombic phase of WO3 in the amorphous matrix. The films formed at substrate temperatures 473 K were of polycrystalline in nature. The crystallite size of the films increased from 12 to 43 nm with increase of substrate temperature from 473 to 673 K. The scanning electron microscope images of the films formed at 473 K showed the leaf like structure with grain size of 1.2 μm. When substrate temperature increased to 573 K the size of the grains enhanced to 2.4 μm. Raman spectra of the films confirmed the presence of characteristic vibration modes of W = O, W - O - W and O - W - O. The optical band gap of the films increased with increase of substrate temperature. The electrochromic property, that is the color efficiency increased from 42.5 to 50.5 cm2/C with the increase of substrate temperature from 473 to 673 K respectively. The structural and electrochromic properties of the Mo doped WO3 films will be correlated with the substrate temperature maintained during growth of the films.


Sign in / Sign up

Export Citation Format

Share Document