Continuous Microindentation of Passivated Surfaces in Surface Active Media

1993 ◽  
Vol 308 ◽  
Author(s):  
Shankar K. Venkataraman ◽  
He Huang ◽  
David L. Kohlstedt ◽  
William .W. Gerberich

ABSTRACTContinuous microindentation tests on electropolished, single crystal Fe(3wt%Si) and Ni surfaces with thin passivation layers exhibit sharp discontinuities in the load-displacement behavior. At the discontinuity, which occurs at a load of 1.8 mN for Fe(3wt%Si) and 0.1 mN for Ni, stresses below the indenter were close to the theoretical strength of the corresponding metal. Microindentation tests performed to loads less than the discontinuity point showed an elastic load-unload behavior. On removing the passive film with a NaCl or HC1 solution, strengths are one to two orders of magnitude smaller in the presence of the chloride ions. On evaporation of the liquid, the load at the discontinuity returned to its initial value due to repassivation, indicative of a passivation oxide layer with varying thickness. This conclusion was verified by ellipsometry. Even though the elastic load-unload behavior on the passivated surface suggests elastic behavior, both elastic finite element and non-linear, elastic perfectly plastic finite element solutions strongly suggest that this might not be the case. Several suggestions as to the reasons for the deviation from continuum theory are presented.

Author(s):  
Z. Song ◽  
K. Komvopoulos

A finite element analysis of the indentation of an elastic-perfectly plastic half-space by a rigid sphere was performed for a wide range of material properties. The post-yield deformation behavior was found to consist of four deformation regimes, namely linear elastic-plastic, non-linear elastic-plastic, transient fully-plastic, and steady-state fully-plastic deformation. The boundaries of these deformation regimes were determined numerically in terms of elastic-plastic material properties. The deformation behavior in different regimes was examined in the context of finite element results showing the evolution of subsurface plasticity for different material properties.


2020 ◽  
Vol 10 (1) ◽  
pp. 519-526
Author(s):  
Krzysztof Nepelski

AbstractIn order to correctly model the behaviour of a building under load, it is necessary to take into account the displacement of the subsoil under the foundations. The subsoil is a material with typically non-linear behaviour. This paper presents an example of the modelling of a tall, 14-storey, building located in Lublin. The building was constructed on loess subsoil, with the use of a base slab. The subsoil lying directly beneath the foundations was described using the Modified Cam-Clay model, while the linear elastic perfectly plastic model with the Coulomb-Mohr failure criterion was used for the deeper subsoil. The parameters of the subsoil model were derived on the basis of the results of CPT soundings and laboratory oedometer tests. In numerical FEM analyses, the floors of the building were added in subsequent calculation steps, simulating the actual process of building construction. The results of the calculations involved the displacements taken in the subsequent calculation steps, which were compared with the displacements of 14 geodetic benchmarks placed in the slab.


2020 ◽  
Vol 57 (3) ◽  
pp. 448-452 ◽  
Author(s):  
A.S. Lees ◽  
J. Clausen

Conventional methods of characterizing the mechanical properties of soil and geogrid separately are not suited to multi-axial stabilizing geogrid that depends critically on the interaction between soil particles and geogrid. This has been overcome by testing the soil and geogrid product together as one composite material in large specimen triaxial compression tests and fitting a nonlinear failure envelope to the peak failure states. As such, the performance of stabilizing, multi-axial geogrid can be characterized in a measurable way. The failure envelope was adopted in a linear elastic – perfectly plastic constitutive model and implemented into finite element analysis, incorporating a linear variation of enhanced strength with distance from the geogrid plane. This was shown to produce reasonably accurate simulations of triaxial compression tests of both stabilized and nonstabilized specimens at all the confining stresses tested with one set of input parameters for the failure envelope and its variation with distance from the geogrid plane.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2000 ◽  
Author(s):  
Chris L. Mullen ◽  
Prabin R. Tuladhar

Abstract Discussion of a Performance - Based Engineering evaluation procedure for an existing interstate highway bridge in north Mississippi. The bridge is in a highly trafficked location near the Memphis Metropolitan area and is reflective of modern design practices in Mississippi. Results are presented of nonlinear damage response and displacement ductility performance of the reinforced concrete bents and their foundations predicted using static finite element (FE) computations. The model considers the composite action of the concrete and the reinforcing steel materials under axial force, shear, torsion and flexure. The performance-based evaluation includes three-dimensional computational simulations of the nonlinear bridge system, including substructures and superstructure. The response spectrum dynamic analysis method will also be carried out on the linear elastic three-dimensional model to predict the linear elastic behavior. Field vibration measurements, including ambient and hammer-impact, were performed to calibrate the models. The computed transfer functions are currently being evaluated to correlate vibration measurements and the Finite element models.


Author(s):  
Peihua Jing ◽  
Tariq Khraishi ◽  
Larissa Gorbatikh

In this work, closed-form analytical solutions for the plasticity zone shape at the lip of a semi-infinite crack are developed. The material is assumed isotropic with a linear elastic-perfectly plastic constitution. The solutions have been developed for the cases of plane stress and plane strain. The three crack modes, mode I, II and III have been considered. Finally, prediction of the plasticity zone extent has been performed for both the Von Mises and Tresca yield criterion. Significant differences have been found between the plane stress and plane strain conditions, as well as between the three crack modes’ solutions. Also, significant differences have been found when compared to classical plasticity zone calculations using the Irwin approach.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


1985 ◽  
Vol 107 (1) ◽  
pp. 13-18 ◽  
Author(s):  
B. V. Kiefer ◽  
P. D. Hilton

Capabilities for the analysis of combined viscous and plastic behavior have been added to an existing finite element computer program for two-dimensional elastic-plastic calculations. This program (PAPSTB) has been formulated for elastic-plastic stress and deformation analyses of two-dimensional and axisymmetric structures. It has the ability to model large strains and large deformations of elastic-perfectly plastic, multi-linear hardening, or power-hardening materials. The program is based on incremental plasticity theory with a von Mises yield criterion. Time dependent behavior has been introduced into the PAPSTB program by adding a viscous strain increment to the elastic and plastic strain increment to form the total strain increment. The viscous calculations presently employ a power-law relationship between the viscous strain rate and the effective stress. The finite element code can be easily modified to handle more complex viscous models. The Newmark method for time integration is used, i.e., an input parameter is included which enables the user to vary the time domain approximation between forward (explicit) and backward (implicit) difference. Automatic time stepping is used to provide for stability in the viscous calculations. It is controlled by an input parameter related to the ratio of the current viscous strain increment to the total strain. The viscoplastic capabilities of the PAPSTB program are verified using the axisymmetric problem of an internally pressurized, thick-walled cylinder. The transient viscoplastic case is analyzed to demonstrate that the elastic-perfectly plastic solution is obtained as a steady-state condition is approached. The influence of varying the time integration parameter for transient viscoplastic calculations is demonstrated. In addition, the effects of time step on solution accuracy are investigated by means of the automatic time stepping algorithm in the program. The approach is then applied to a simple forging problem of cylinder upsetting.


1985 ◽  
Vol 52 (1) ◽  
pp. 75-82 ◽  
Author(s):  
V. Bhargava ◽  
G. T. Hahn ◽  
C. A. Rubin

This paper presents finite element analyses of two-dimensional (plane strain), elastic-plastic, repeated, frictionless rolling contact. The analysis employs the elastic-perfectly plastic, cycle and strain-amplitude-independent material used in the Merwin and Johnson analysis but avoids several assumptions made by these workers. Repeated rolling contacts are simulated by multiple translations of a semielliptical Hertzian pressure distribution. Results at p0/k = 3.5, 4.35, and 5.0 are compared to the Merwin and Johnson prediction. Shakedown is observed at p0/k = 3.5, but the comparisons reveal significant differences in the amount and distribution of residual shear strain and forward flow at p0/k = 4.35 and p0/k = 5.0. The peak incremental, shear strain per cycle for steady state is five times the value calculated by Merwin and Johnson, and the plastic strain cycle is highly nonsymmetric.


Author(s):  
Ralf Peek ◽  
Heedo Yun

Analytical solutions for the lateral buckling of pipelines exist for the case when the pipe material remains in the linearly elastic range. However for truly high temperatures and/or heavier flowlines, plastic deformation cannot be excluded. One then has to resort to finite element analyses, as no analytical solutions are available. This paper does not provide such an analytical solution, but it does show that if the finite element solution has been calculated once, then that solution can be scaled so that it applies for any other values of the design parameters. Thus the finite element solution need only be calculated once and for all. Thereafter, other solutions can be calculated by scaling the finite element solution using simple analytical formulas. However, the shape of the moment-curvature relation must not change. That is, the moment-curvature relation must be a scaled version of the moment-curvature relation for the reference problem, where different scale factors may be applied to the moment and curvature. This paper goes beyond standard dimensional analysis (as justified by the Bucklingham Π theorem), to establish a stronger scalability result, and uses it to develop simple formulas for the lateral buckling of any pipeline made of elastic-plastic material. The paper includes the derivation of the scaling result, the application procedure, the reference solution for an elastic-perfectly plastic pipe, and an example to illustrate how this reference solution can be used to calculate the lateral buckling response for any elastic-perfectly plastic pipe.


Sign in / Sign up

Export Citation Format

Share Document