Microstructure of Si Films Deposited on Si(100) Surfaces by Remote Plasma-Enhanced Chemicalvapor Deposition, Rpecvd: Dependence on Process Pressure and Substrate Temperature

1993 ◽  
Vol 311 ◽  
Author(s):  
S. Habermehl ◽  
S. S. He ◽  
Y. L. Chen ◽  
G. Lucovsky

ABSTRACTThe microstructure of Si thin films, deposited on in-situ cleaned Si(100) surfaces by remote plasma-enhanced chemical-vapor deposition (RPECVD), is dependent on the process pressure, substrate temperature and H2 flow rate. Surface characterization by on-line low energy electron diffraction, LEED, has been used to detect changes in the character of the deposited films which can either be amorphous, microcrystalline or crystalline, hereafter designated as a-Si, Sμc-Si, and c-Si, respectively. We have used these results to generate phase diagrams for the Si microstructure as a function of the process pressure and substrate temperature, including the flow rate of H2 as an additional deposition parameter.

2012 ◽  
Vol 463-464 ◽  
pp. 592-596
Author(s):  
Lei Zhao ◽  
Ben Ding Zhao ◽  
Bao Jun Yan ◽  
Hong Wei Diao ◽  
Wen Jing Wang

The energy bandgap (Eg) of silicon thin film prepared by plasma enhanced chemical vapor deposition (PECVD) is greatly dependent on the deposition conditions. Although the influence of some deposition parameters on Eg has been studied individually, it is still not clear which parameter plays the most important role. Here, a 5-factor 5-level factorial experiment was designed and carried out for the deposition parameters: the flow rate of SiH4, the flow rate of H2, the plasma power, the total gas pressure, and the substrate temperature. By making main effect analysis to the influences of such 5 factors on Eg, not only the influence of each deposition parameter was obtained, but also the most critical parameters were selected out. It was found that the gas flow rate of SiH4 and the total gas pressure played the most important roles on determining Eg of silicon thin film. That is to say, in order to obtain an expected Eg for Si thin film prepared by PECVD, much attention should be paid to optimize the two parameters. However, other parameters, including the H2 flow rate, the plasma power and the substrate temperature, can be set as default values according to the experience. Thus, the optimization workload can be reduced greatly.


1995 ◽  
Vol 377 ◽  
Author(s):  
Shuangying Yu ◽  
Sadanand Deshpande ◽  
Erdogan Gulari ◽  
Jerzy Kanicki

ABSTRACTIn this study, we have deposited polycrystalline silicon (poly-Si) thin films by hot-wire Chemical Vapor Deposition (CVD) using hydrogen and disilane as the reactive gases. We selectively activate hydrogen and let disilane bypass the hot tungsten filament assembly and enter the reactor downstream from hydrogen. This may provide a better process chemistry, and by this approach, we have deposited poly-Si films at a substrate temperature as low as 310°C and at a growth rate as high as 100 Å/min. The substrate temperature is more than 2000C lower and the growth rate is more than twice higher compared to those of LPCVD poly-Si films. The effect of hydrogen flow rate, disilane flow rate and substrate temperature on the deposition rate and structural properties of the polysilicon films are investigated. The deposited films are characterized by transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction.


1989 ◽  
Vol 146 ◽  
Author(s):  
Paihung Pan ◽  
Ahmad Kermani ◽  
Wayne Berry ◽  
Jimmy Liao

ABSTRACTElectrical properties of thin (12 nm) SiO2 films with and without in-situ deposited poly Si electrodes have been studied. Thin SiO2 films were grown by the rapid thermal oxidation (RTO) process and the poly Si films were deposited by the rapid thermal chemical vapor deposition (RTCVD) technique at 675°C and 800°C. Good electrical properties were observed for SiO2 films with thin in-situ poly Si deposition; the flatband voltage was ∼ -0.86 V, the interface state density was < 2 × 1010/cm2/eV, and breakdown strength was > 10 MV/cm. The properties of RTCVD poly Si were also studied. The grain size was 10-60 rim before anneal and was 50-120 rim after anneal. Voids were found in thin (< 70 nm) RTCVD poly Si films. No difference in either SiO2 properties or poly Si properties was observed for poly Si films deposited at different temperatures.


1990 ◽  
Author(s):  
Ting-Chen Hsu ◽  
Brian G. Anthony ◽  
Louis H. Breaux ◽  
Rong Z. Qian ◽  
Sanjay K. Banerjee ◽  
...  

1992 ◽  
Vol 284 ◽  
Author(s):  
G. Lucovsky ◽  
Y. Ma ◽  
S. S. He ◽  
T. Yasuda ◽  
D. J. Stephens ◽  
...  

ABSTRACTConditions for depositing quasi-stoichiometric silicon nitride films by low-temperature, remote plasma-enhanced chemical-vapor deposition, RPECVD, have been identified using on-line Auger electron spectroscopy, AES, and off-line optical and infrared, IR, spectroscopies. Quasi-stoichiometric films, by the definition propose in this paper, do not display spectroscopic evidence for Si-Si bonds, but contain bonded-H in Si-H and Si-NH arrangements. Incorporation of RPECVD nitrides into transistor devices has demonstrated that electrical performance is optimized when the films are quasi-stoichiometric with relatively low Si-NH concentrations.


2006 ◽  
Vol 527-529 ◽  
pp. 153-158 ◽  
Author(s):  
Takashi Aigo ◽  
M. Sawamura ◽  
Tatsuo Fujimoto ◽  
Masakazu Katsuno ◽  
Hirokatsu Yashiro ◽  
...  

4H-SiC epitaxial layers on Carbon-face (C-face) substrates were grown by a low-pressure hot-wall type chemical vapor deposition system. The C-face substrates were prepared by fine mechanical polishing using diamond abrasives with the grit size of 0.25 %m and in-situ HCl etching at 1400°C, which produced surface roughness of 0.27 nm. The use of the smooth substrates made it possible to decrease the substrate temperature and specular surface morphologies were realized at C/Si ratios of 1.5 or less both for a substrate temperature of 1550°C and for that of 1500°C. Surface roughness of 0.26 nm and the residual donor concentration of 6.7×1014 cm-3 were obtained for a C-face epitaxial layer grown at a C/Si ratio of 1.5 and at a substrate temperature of 1550°C. Schottky barrier diodes were fabricated on a non-doped C-face epitaxial layer grown at 1500°C and it was verified that a high quality metal-semiconductor interface was formed on the epitaxial layer.


2017 ◽  
Vol 895 ◽  
pp. 28-32 ◽  
Author(s):  
Hua Cheng ◽  
Di Wang ◽  
Feng Li Li

Micro-Si films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on microstructure and electrical conductivity of micro-Si film were investigated. The results show that, with the increasing of substrate temperature, crystallinity and grain size increased monotonously, of which a competing balance would determine the electrical conductivity of micro-Si films. Based on these results, relatively small grain size and appropriate crystallinity would be beneficial to improve the electrical properties of micro-Si films.


1992 ◽  
Vol 268 ◽  
Author(s):  
S. Thomas ◽  
J. Irby ◽  
D. Kinosky ◽  
R. Qian ◽  
I. Iqbal ◽  
...  

ABSTRACTLow temperature Si and Si1−xGex epitaxy is one of the major thrusts in the trend towards low temperature Si processing for future generation ULSI circuits and novel Si-based devices. A remote plasma-enhanced chemical vapor deposition (RPCVD) technique has been developed to achieve Si homoepitaxy and Si1−xGex heteroepitaxy at low temperatures (≤450'C). P-type films have been grown by introducing 90 ppm or 5000 ppm B2H6/He into the system during the growth process to achieve in situ electrically active boron doping. A mesa diode structure with minimal thermal budget in the fabrication process has been employed to evaluate the properties of the boron-doped Si and Si1−xGex films grown at 450°C by RPCVD. Leakage current densities are reduced for diodes grown at 14–18 W (40–50 Å/min. growth rates) compared to similar devices grown at 6.6 W (5 Å/min.). N-type films have been grown by the introduction of 50 ppm PH3/He. Secondary ion mass spectroscopy (SIMS) has been employed to analyze the boron and phosphorus incorporation efficiencies and doping profiles under different conditions. Boron and phosphorus doping profile transitions as sharp as 50–100 Å/decade have been achieved. Transmission electron microscopy (TEM) has been used to investigate the microstructure of the B-doped films.


1992 ◽  
Vol 259 ◽  
Author(s):  
H. H. Lamb ◽  
S. Kalem ◽  
S. Bedge ◽  
T. Yasuda ◽  
Y. Ma ◽  
...  

ABSTRACTEx situ UV/O2 cleaning prior to SiO2 deposition by RPECVD results in an SiO2/Si interface with mid-gap Dit values 2-5 times higher than interfaces formed by in situ exposure of HF-etched wafers to plasma-generated atomic O. In situ exposures to plasma-generated atomic H and atomic O are each effective at removing carbon contamination acquired by the UV/O2 cleaned wafers during transfer and introduction to the RPECVD chamber. However, in situ exposure of the photochemical oxide layer to atomic O results in higher mid-gap Dit values, and in situ exposure to atomic H results in creation of dangling bond defects (Pb centers).


Sign in / Sign up

Export Citation Format

Share Document