Diffusive Creep in Polycrystals

1993 ◽  
Vol 317 ◽  
Author(s):  
David B. Laks ◽  
Dimitrios Maroudas ◽  
Sokrates T. Pantelides ◽  
IBM Thomas J. Watson

AbstractWe report quantitative mesoscopic calculations of diffusive creep in polycrystals under external stress. The analysis includes mass transport both in the grains and along the grain boundaries, fully coupled with elastic deformations in the grains and the evolution of the displacement field. We find that the net creep rate depends strongly on the details of grain boundary arrangements. The calculations represent a first step toward a comprehensive first-principles theory of plasticity.

1997 ◽  
Vol 492 ◽  
Author(s):  
X. Chen ◽  
D. E. Ellis ◽  
G. B. Olson

For a long time, understanding the mechanisms of impurity-promoted embrittlement in iron and the consequent cohesion(decohesion) effects has been a challenge for materials scientists. The role alloying elements play in impurity-promoted embrittlement is important due to either their direct intergranular cohesion(decohesion) effects or effects upon embrittling potency of other impurities. Some alloying elements like Pd and Mo are known to be helpful for intergranular cohesion in iron and some other alloying elements like Mn are known to segregate to and weaken iron grain boundaries dramatically[1]. There have been intensive investigations on these mechanisms for a long time and especially, with the progress in computing techniques in recent years, calculations on more realistic models have become possible[2–4]. In this paper we briefly present our studies on some selected alloying-element/iron grain boundaries(GB) and free surface(FS) systems. The effects of Pd, Mo, Mn and Cr on the Fe Σ5 (031) grain boundary and its corresponding (031) free surface are examined, using a combination of molecular dynamics(MD) and first-principles electronic structure calculations. Section 2 gives a brief introduction to the methods used and Section 3 gives the main results.


1998 ◽  
Vol 527 ◽  
Author(s):  
O. Schneeweiss ◽  
I. Turek ◽  
J. Čermák ◽  
P. Lejček

ABSTRACTLocation of diffused 57Co atoms in single crystals, bicrystals and polycrystals of pure iron and Fe72Al28alloy were investigated by means of emission Mössbauer spectroscopy. To interpret the results, first principles calculations of iron atom magnetic moments and hyper-fine field were carried out. From comparison of M6ssbauer spectra of single crystals with those of bicrystals and polycrystals, an information about grain boundary positions occupied by diffusing atoms is obtained. It is shown that about 5% of the diffusing atoms at the {112} grain boundary of iron are located at the positions either having impurity atoms in the nearest neighbourhood or characterized by larger atomic spacing in comparison with the bulk. In the Fe72Al28 a dominating portion of diffusing atoms have different surrounding than in grain volume. An enrichment of grain boundaries by aluminum could explain their hyperfine parameters.


1990 ◽  
Vol 213 ◽  
Author(s):  
K. Hampel ◽  
D.D. Vvedensky ◽  
S. Crampin

ABSTRACTA detailed understanding of planar defects plays an important role in the search for a comprehensive description of the mechanical behaviour of metals and alloys. We present calculations for isolated stacking faults and grain boundaries using the layer Korringa-Kohn-Rostoker method including an assessment of the force theorem, which has already proven itself in evaluating defect energies for elemental close-packed metals. These ab initio total energy calculations will be supplemented by a study of the changes in bonding and local magnetic properties near a symmetric Σ5 (310) grain boundary in Fe


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6966
Author(s):  
Qian Li ◽  
Jiayong Zhang ◽  
Huayuan Tang ◽  
Hongwu Zhang ◽  
Hongfei Ye ◽  
...  

Based on molecular dynamics simulations, the creep behaviors of nanocrystalline Ni before and after the segregation of Mo atoms at grain boundaries are comparatively investigated with the influences of external stress, grain size, temperature, and the concentration of Mo atoms taken into consideration. The results show that the creep strain rate of nanocrystalline Ni decreases significantly after the segregation of Mo atoms at grain boundaries due to the increase of the activation energy. The creep mechanisms corresponding to low, medium, and high stress states are respectively diffusion, grain boundary slip and dislocation activities based on the analysis of stress exponent and grain size exponent for both pure Ni and segregated Ni-Mo samples. Importantly, the influence of external stress and grain size on the creep strain rate of segregated Ni-Mo samples agrees well with the classical Bird-Dorn-Mukherjee model. The results also show that segregation has little effect on the creep process dominated by lattice diffusion. However, it can effectively reduce the strain rate of the creep deformation dominated by grain boundary behaviors and dislocation activities, where the creep rate decreases when increasing the concentration of Mo atoms at grain boundaries within a certain range.


2007 ◽  
pp. 1837-1840
Author(s):  
Y. Inoue ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

1990 ◽  
Vol 209 ◽  
Author(s):  
Erik C. Sowa ◽  
A. Gonis ◽  
X. -G. Zhang

ABSTRACTWe present first-principles calculations of the electronic structure of Nb grain boundaries. These are the first such calculations for a bcc metal using the real-space multiple-scattering theory (RSMST). Local densities of states near a Σ5 twist grain boundary are compared to those for bulk Nb.


2016 ◽  
Vol 18 (48) ◽  
pp. 33103-33108 ◽  
Author(s):  
Zhihai He ◽  
H. Y. He ◽  
R. Ding ◽  
B. C. Pan ◽  
J. L. Chen

The accumulation of H at the small-angle tilt grain boundary (GB) in the W(001) surface is investigated, on the basis of the first-principles calculations.


1997 ◽  
Vol 492 ◽  
Author(s):  
Y. Yan ◽  
M. F. Chisholm ◽  
G. Duscher ◽  
S. J. Pennycook ◽  
A. Maiti ◽  
...  

ABSTRACTFirst-principles density-functional calculations were used to study the effects of Ca impurities on the Σ=5 (310) <001> tilt grain boundaries in MgO. An equilibrium structure and two metastable structures of the grain boundaries in pure MgO have been established. The calculations further demonstrated that Ca impurities segregate at particular sites in the metastable grain boundary and induce a structural transformation. This result is consistent with atomic resolution Z-contrast imaging. The calculations also found that the impurities at the grain boundaries do not induce states in the band gap. The mechanism of the transformation is also discussed.


Sign in / Sign up

Export Citation Format

Share Document