scholarly journals Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6966
Author(s):  
Qian Li ◽  
Jiayong Zhang ◽  
Huayuan Tang ◽  
Hongwu Zhang ◽  
Hongfei Ye ◽  
...  

Based on molecular dynamics simulations, the creep behaviors of nanocrystalline Ni before and after the segregation of Mo atoms at grain boundaries are comparatively investigated with the influences of external stress, grain size, temperature, and the concentration of Mo atoms taken into consideration. The results show that the creep strain rate of nanocrystalline Ni decreases significantly after the segregation of Mo atoms at grain boundaries due to the increase of the activation energy. The creep mechanisms corresponding to low, medium, and high stress states are respectively diffusion, grain boundary slip and dislocation activities based on the analysis of stress exponent and grain size exponent for both pure Ni and segregated Ni-Mo samples. Importantly, the influence of external stress and grain size on the creep strain rate of segregated Ni-Mo samples agrees well with the classical Bird-Dorn-Mukherjee model. The results also show that segregation has little effect on the creep process dominated by lattice diffusion. However, it can effectively reduce the strain rate of the creep deformation dominated by grain boundary behaviors and dislocation activities, where the creep rate decreases when increasing the concentration of Mo atoms at grain boundaries within a certain range.

2005 ◽  
Vol 20 (11) ◽  
pp. 2955-2959 ◽  
Author(s):  
J. Chen ◽  
Y.N. Shi ◽  
K. Lu

Nanoindentation technique was used to measure the strain rate sensitivity (m) of a nanocrystalline Cu-Ni-P alloy prepared by means of electrodeposition. The m value decreases from 0.034 to 0.018 when the nominal grain size increases from 7 nm to 33 nm. Both m values of the alloy are obviously lower than those of the pure Cu with similar grain size, implying that P segregation at grain boundaries might play a key role in retarding grain boundary activities as compared to pure Cu samples.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


2000 ◽  
Vol 646 ◽  
Author(s):  
Haruyuki Inui ◽  
Koji Ishikawa ◽  
Masaharu Yamaguchi

ABSTRACTEffects of ternary additions on the deformation behavior of single crystals of MoSi2 with the hard [001] and soft [0 15 1] orientations have been investigated in compression and compression creep. The alloying elements studied include V, Cr, Nb and Al that form a C40 disilicide with Si and W and Re that form a C11b disilicide with Si. The addition of Al is found to decrease the yield strength of MoSi2 at all temperatures while the additions of V, Cr and Nb are found to decrease the yield strength at low temperatures and to increase the yield strength at high temperatures. In contrast, the additions of W and Re are found to increase the yield strength at all temperatures. The creep strain rate for the [001] orientation is significantly lower than that for the [0 15 1] orientation. The creep strain rate for both orientations is significantly improved by alloying with ternary elements such as Re and Nb.


Fractals ◽  
2000 ◽  
Vol 08 (02) ◽  
pp. 189-194 ◽  
Author(s):  
MIKI TAKAHASHI ◽  
HIROYUKI NAGAHAMA

Fractal analysis on experimentally recrystallized quartz grain boundaries has been employed to relate the grain boundary complexities with deformation conditions, such as strain rate and temperature. The fractal dimensional increment of the grain boundaries, defined as (D-1), and the degree of irregularity in grain boundaries, is proportional to the logarithmic of the Zener–Hollomon parameter that is defined by strain rate and temperature (the Arrhenius term). The physical mean of the empirical relationship can be explained theoretically by a new grain boundary migration model (GBM or cell dynamics model) extended by the fractal concepts and the dimension analysis. This is a more general model than the migration growth model for the fractal grain boundaries.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Fan Zhang ◽  
Jianjian Zhao ◽  
Dawei Hu ◽  
Qian Sheng ◽  
Jianfu Shao

Fluid flow and fluid-rock interaction mainly take place in fracture network, consequently resulting in deformation and permeability variation of rock and deterioration of the wellbore performance. Mechanical-reactive flow coupling creep tests are performed on cracked granite under various confining pressures and acid and alkaline solution flows. The testing results show that the confining pressure and solution pH significantly influence the creep deformation, creep strain rate, and permeability. A primary creep stage and secondary creep stage are observed in all creep tests in this study; notably, the sample under a confining pressure of 10 MPa and acid solution injection undergoes creep failure for over 2700 hours. The acid solution has a more obvious influence on the creep behavior than that of the alkaline solution. With an increase in confining pressure, the total creep strain and creep strain rate in the samples gradually decrease during the injection of either solution. The permeability of the samples injected with either solution gradually deceases during the testing process, and this deceasing rate increases with the confining pressure. The scanning electron microscopy observations on the crack surfaces after the creep tests show that the surfaces of the fractures injected with the acid solution are smooth due to the dissolution of the matrix, while those injected with the alkaline solution include voids due to the dissolution of quartz. These experimental results could improve the understanding of the long-term transport and mechanical behaviors of wellbore.


2021 ◽  
Vol 2021 (3) ◽  
pp. 77-85
Author(s):  
K. M. Borysovska ◽  
◽  
N. M. Marchenko ◽  
Yu. M. Podrezov ◽  
S. O. Firstov ◽  
...  

The (DD) method was used to model the formation of the plastic zone of the top of the cracks in polycrystalline molybdenum. Special attention was paid to take into account the interaction of dislocations in the plastic zone with grain boundaries. Structural sensitivity of fracture toughness was analyzed under brittle-ductile condition. Simulations were performed for a range of grain sizes from 400 to 100 μm, at which a sudden increase in fracture toughness with a decrease of grain size was experimentally shown. We calculated the value of K1c taking into account the shielding action of dislocations. The position of all dislocations in the plastic zone at fracture moment was calculated. Based on these data, we obtained the dependences of dislocation density on the distance from the crack tip thereby confirming significant influence of the grain boundaries on plastic zone formation. At large grain sizes, when the plastic zone does not touch the boundary, the distribution of dislocations remained unchanged. As grains reduce their size to size of the plastic zone, they start formating a dislocation pile – up near the boundaries. Dislocations on plastic zone move slightly toward the crack tip, but the density of dislocations in the middle of the grain remains unchanged, and fracture toughness remains almost unchanged. Further reduction of the grain size leads to the Frank-Reed source activation on the grain boundary Forming dislocation pile-up of the neighbor grains. Its stress concentration acts on dislocations of the first grain and causes redistribution of plastic zone dislocations. If the reduction in grain size is not enough to form a strong pile-up, density of dislocations on plastic zone increases slightly and crack resistance increases a few percent. Further reduction of grains promotes strong pile-up, dislocations move to crack tip, and its density on plastic zone increases. Crack is shielded and fracture toughness increases sharply. The calculation showed that the fracture toughness jump is observed at grain sizes of 100—150 μm, in good agreement with the experiment. Keywords: dislocation dynamics simulation, molybdenum, fracture toughness, grain size, plastic zone, brittle-ductile transition.


1997 ◽  
Vol 43 (144) ◽  
pp. 311-320 ◽  
Author(s):  
Lorne W. Gold

AbstractObservations are reported on cracks formed during compressive, unidirectional, constant-strain-rate deformation of columnar-grain ice. The axis of hexagonal crystallographic symmetry of each grain tended to be in the plane perpendicular to the long direction of the grains and to have a random orientation in that plane. For stress applied perpendicular to the long direction of the grains, the deformation was practically two-dimensional. It was found that the relative proportion of grain-boundary cracks increased with increasing strain rate, decreasing temperature and, for strain rate greater than 7 × 10−5 s−1, with decreasing grain-size. Almost all the grain-boundary cracks had at least one edge at a triple point. For each test, the grain-boundary and transcrystalline crack lengths tended to have a log-normal distribution. The logarithmic mean crack length (LMCL) decreased with increasing strain rate, decreasing grain-size and decreasing temperature and tended to a constant value of 0.75 mm at 10°C. For grain-size of 3 mm or greater, the LMCL had a maximum at a strain rate of 10−5 to 10−6 S−1 at −10°C. The LMCLs and the relative proportion of grain-boundary cracks tended to be normally distributed for given load conditions.


2002 ◽  
Vol 727 ◽  
Author(s):  
Y. Champion ◽  
P. Langlois ◽  
S. Guérin-Mailly ◽  
C. Langlois ◽  
M. J. Hÿtch

AbstractUnderstanding the mechanical behaviour of metallic nanostructures is a key issue for their development. On the one hand, knowledge of the plastic behaviour at various temperatures is essential to control the synthesis, forming, and machining of such materials. Equally, a clear understanding of atomic and mesoscopic mechanisms, involving defects and their interactions, is essential for the control of ageing and functional properties. Regarding plastic deformation at room temperature, there is now evidence for unusual behaviour in nanostructured metals. In addition to high resistance and ductility, tensile testing reveals peculiar elasto-plastic deformation. Such behaviour was initially attributed to grain-boundary sliding. However, intergranular areas (including triple junctions) may possess special properties compared to their microcrystalline counterparts. For example, low activation energies have been measured for grain-boundary diffusion and it has been observed that grain-boundaries may act as dislocation sources and nucleation sites for deformation twinning.In this paper, we report on analysis on bulk copper nanostructures. Grain-boundaries are studied, by cross-correlating information from mechanical tensile testing and structural analysis, including X-ray diffraction (XRD) and transmission electron microscopy (TEM). Macroscopic bulk specimens (with grain size of about 80 nm) are prepared by powder metallurgy techniques, modified to fit to the special properties of nanocrystalline powders. Processing includes coldisostatic pressing, sintering and differential extrusion. The powders used (grain size of 40 nm) are synthesised by evaporation and cryo-condensation of a metallic vapour within liquid nitrogen. Results on mechanical testing and structural analysis will be reported. Emphasis will be placed on the structure of grain-boundaries (type of grain-boundary, grain-boundary thickness) studied by TEM and high resolution TEM image analysed using the geometric phase technique. The nanostructure was revealed to be consist in agglomerate of nano-size grains separated by low angle grain-boundaries. Agglomerates are themselves separerated by general high angle boundaries. These observations will then be related to the unusual mechanical true stress-true strain curves of the metallic nanostructures.


Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.


Sign in / Sign up

Export Citation Format

Share Document