Dopant Activation And Epitaxial Regrowth in P-Implanted Pseudomorphic Ge0.12Si0.88 Layers on Si (100)

1993 ◽  
Vol 321 ◽  
Author(s):  
D. Y. C. Lie ◽  
T. K. Cams ◽  
N. D. Theodore ◽  
F. Eisen ◽  
M.-A. Nicolet ◽  
...  

AbstractA pseudomorphic Ge0.12Si0.88 film 265 nm thick grown on a Si (100) substrate by molecular beam epitaxy was implanted at room temperature with a dose of 1.5 × 1015 cm2 of 100 keV P ions. The projected range of the ions is about 125 nm, which is well within the film thickness. Only the top portion of the Ge0.12Si0.88 layer was amorphized by the implantation. Both implanted and non-implanted samples were subsequently annealed in vacuum for 30 Minutes from 400 °C to 800 °C. Values of electron Hall sheet mobility and concentration in the implanted Ge0.12Si0.88 epilayer were measured after annealing. The solid phase epitaxial regrowth is complete at 550 °C, where the implanted phosphorus reaches - 100 % activation. The regrown Ge0.12Si0.88 layer exhibits inferior crystalline quality to that of the virgin sample and is relaxed, but the non-implanted portion of the film remains pseudomorphic at 550 °C. When annealed at 800 °C, the strain in the whole epilayer relaxes. The sheet electron mobility values measured at room temperature in the regrown samples (Tann ≥ 550 °C) are about 20% less than those of pure Si.

1994 ◽  
Vol 342 ◽  
Author(s):  
D. Y. C. Lie ◽  
J. H. Song ◽  
N. D. Theodore ◽  
F. Eisen ◽  
M.-A. Nicolet ◽  
...  

ABSTRACTPseudomorphic Ge0.12Si0.88 films 265 nm thick grown by molecular beam epitaxy on p- Si(100) substrates were implanted with 100 keV 31P at room temperature for a dose of 5 x 1013/cm2. The projected range of the implanted P is about half the epilayer thickness. The implanted layers, together with non-implanted virgin samples, were subsequently annealed by both rapid thermal annealing in nitrogen and by steady-state furnace annealing in vacuum. The damage and strain of the annealed layers were studied by 4He channeling and x-ray doublecrystal diffraction. For a dose of 5 x 1013 P /cm2, both the damage and strain introduced by implantation can be completely removed, within instrumental sensitivity, by rapid thermal annealing at 700 °C for 10 - 40 s. Furnace annealing at 550 °C for 30 min for this sample removes most of the damage and strain induced by implantation. Furnace annealing at 700 °C or higher worsens the crystallinity of the layer and the strain relaxes. Hall measurements were performed on the same samples. Furnace annealing cannot achieve good dopant activation without introducing significant strain relaxation to the heterostructure, while rapid thermal annealing can.


2008 ◽  
Vol 104 (9) ◽  
pp. 093914 ◽  
Author(s):  
X. Y. Li ◽  
S. X. Wu ◽  
L. M. Xu ◽  
Y. J. Liu ◽  
X. J. Xing ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2907-2916 ◽  
Author(s):  
Shulong Lu ◽  
Shiro Uchida

ABSTRACTWe studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10-5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.


1999 ◽  
Vol 595 ◽  
Author(s):  
U. Hömmerich ◽  
J. T. Seo ◽  
J. D. MacKenzie ◽  
C. R. Abernathy ◽  
R. Birkhahn ◽  
...  

AbstractWe report on the luminescence properties of Er doped GaN grown prepared by metalorganic molecular beam epitaxy (MOMBE) and solid-source molecular beam epitaxy (SSMBE) on Si substrates. Both types of samples emitted characteristic 1.54 µm PL resulting from the intra-4f Er3+ transition 4I13/2→4I15/2. Under below-gap excitation the samples exhibited very similar 1.54 µm PL intensities. On the contrary, under above-gap excitation GaN: Er (SSMBE) showed ∼80 times more intense 1.54 µm PL than GaN: Er (MOMBE). In addition, GaN: Er (SSMBE) also emitted intense green luminescence at 537 nm and 558 nm, which was not observed from GaN: Er (MOMBE). The average lifetime of the green PL was determined to be 10.8 µs at 15 K and 5.5 µs at room temperature. A preliminary lifetime analysis suggests that the decrease in lifetime is mainly due to the strong thermalization between the 2H11/2 and 4S3/2 excited states. Nonradiative decay processes are expected to only weakly affect the green luminescence.


Author(s):  
S.S. Khludkov ◽  
◽  
I.A. Prudaev ◽  
L.O. Root ◽  
O.P. Tolbanov ◽  
...  

Aluminum nitride doped with transition metal group atoms as a material for spintronics The overview of scientific literature on electric and magnetic properties of AlN doped with transition metal group atoms is presented. The review is based on literature sources published mainly in the last 10 years. The doping was carried out by different methods: during the material growth (molecular beam epitaxy, magnetron sputtering, discharge techniques) or by implantation into the material. The presented theoretical and experimental data show that AlN doped with transition metal group atoms has ferromagnetic properties at temperatures above room temperature and it is a promising material for spintronics.


1991 ◽  
Vol 228 ◽  
Author(s):  
H. Luo ◽  
N. Samarth ◽  
J. K. Furdyna ◽  
H. Jeon ◽  
J. Ding ◽  
...  

ABSTRACTSuperlattices and quantum wells of Znl-xCdxSe/ZnSe, and heterostructures based on ZnSe/CdSe digital alloys have been grown by molecular beam epitaxy (MBE). Their optical properties were studied with particular emphasis on excitonic absorption and photopumped stimulated emission. Excitonic absorption is easily observable up to 400 K, and is characterized by extremely large absorption coefficients (α = 2×105cm−1). Optically pumped lasing action is obtained at room temperature with a typical threshold intensity of 100 kW/cm2. The lasing mechanism in these II-VI quantum wells appears to be quite different from that in the better studied III-V materials: in our case, the onset of stimulated emission occurs before the saturation of the excitonic absorption, and the stimulated emission occurs at an energy lower than that of the excitonic absorption.


1983 ◽  
Vol 54 (5) ◽  
pp. 2177-2182 ◽  
Author(s):  
R. K. DeFreez ◽  
R. A. Elliott ◽  
J. S. Blakemore ◽  
B. I. Miller ◽  
J. H. McFee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document