scholarly journals Aluminum nitride doped with transition metal group atoms as a material for spintronics

Author(s):  
S.S. Khludkov ◽  
◽  
I.A. Prudaev ◽  
L.O. Root ◽  
O.P. Tolbanov ◽  
...  

Aluminum nitride doped with transition metal group atoms as a material for spintronics The overview of scientific literature on electric and magnetic properties of AlN doped with transition metal group atoms is presented. The review is based on literature sources published mainly in the last 10 years. The doping was carried out by different methods: during the material growth (molecular beam epitaxy, magnetron sputtering, discharge techniques) or by implantation into the material. The presented theoretical and experimental data show that AlN doped with transition metal group atoms has ferromagnetic properties at temperatures above room temperature and it is a promising material for spintronics.

2008 ◽  
Vol 104 (9) ◽  
pp. 093914 ◽  
Author(s):  
X. Y. Li ◽  
S. X. Wu ◽  
L. M. Xu ◽  
Y. J. Liu ◽  
X. J. Xing ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2907-2916 ◽  
Author(s):  
Shulong Lu ◽  
Shiro Uchida

ABSTRACTWe studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10-5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.


1993 ◽  
Vol 312 ◽  
Author(s):  
D. D. Vvedensky ◽  
T. Shitarat ◽  
P. Smilauer ◽  
T. Kaneko ◽  
A. Zangwill

AbstractThe application of Monte Carlo simulations to various epitaxial growth methods is examined from the standpoint of incorporating only those kinetics processes that are required to explain experimental data. A basic model for molecular-beam epitaxy (MBE) is first introduced and some of the features that make it suitable for describing atomic-scale processes are pointed out. Extensions of this model for cases where the atomic constituents of the growing surface are delivered in the form of heteroatomic molecules are then considered. The experimental scenarios that is discussed is the homoepitaxy of GaAs(001) using metalorganic molecular-beam epitaxy (MOMBE) with triethylgallium (TEG) and precursors and using MOCVD with trimethylgallium (TMG). For MOMBE, the comparisons between simulations and experiments are based on reflection high-energy electron diffraction intensities, by analogy with comparisons made for MBE, while for metalorganic chemical vapor deposition (MOCVD) the simulations are compared to in situ glancingincidence x-ray scattering measurements. In both of these cases, the inclusion of a second mobile species to represent the precursor together with various rules for the decomposition of this molecule (in terms of rates and local environments) with be shown to provide a useful starting point for explaining the general trends in the experimental data and for further refinements of the model.


1999 ◽  
Vol 595 ◽  
Author(s):  
U. Hömmerich ◽  
J. T. Seo ◽  
J. D. MacKenzie ◽  
C. R. Abernathy ◽  
R. Birkhahn ◽  
...  

AbstractWe report on the luminescence properties of Er doped GaN grown prepared by metalorganic molecular beam epitaxy (MOMBE) and solid-source molecular beam epitaxy (SSMBE) on Si substrates. Both types of samples emitted characteristic 1.54 µm PL resulting from the intra-4f Er3+ transition 4I13/2→4I15/2. Under below-gap excitation the samples exhibited very similar 1.54 µm PL intensities. On the contrary, under above-gap excitation GaN: Er (SSMBE) showed ∼80 times more intense 1.54 µm PL than GaN: Er (MOMBE). In addition, GaN: Er (SSMBE) also emitted intense green luminescence at 537 nm and 558 nm, which was not observed from GaN: Er (MOMBE). The average lifetime of the green PL was determined to be 10.8 µs at 15 K and 5.5 µs at room temperature. A preliminary lifetime analysis suggests that the decrease in lifetime is mainly due to the strong thermalization between the 2H11/2 and 4S3/2 excited states. Nonradiative decay processes are expected to only weakly affect the green luminescence.


2019 ◽  
Vol 507 ◽  
pp. 163-167 ◽  
Author(s):  
Taro Komori ◽  
Akihito Anzai ◽  
Toshiki Gushi ◽  
Kaoru Toko ◽  
Takashi Suemasu

1999 ◽  
Vol 572 ◽  
Author(s):  
C. M. Lueng ◽  
H. L. W. Chan ◽  
W. K. Fong ◽  
C. Surya ◽  
C. L. Choy

ABSTRACTAluminum nitride (AlN) and gallium nitride (GaN) thin films have potential uses in high temperature, high frequency (e.g. microwave) acoustic devices. In this work, the piezoelectric coefficients of wurtzite AlN and GaN/AlN composite film grown on silicon substrates by molecular beam epitaxy were measured by a Mach-Zehnder type heterodyne interferometer. The effects of the substrate on the measured coefficients are discussed.


2009 ◽  
Vol 54 (2) ◽  
pp. 633-636 ◽  
Author(s):  
C. X. Gao ◽  
F. C. Yu ◽  
D. J. Kim ◽  
H. J. Kim ◽  
Y. E. Ihm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document