Structural and Magnetic Properties of Epitaxially Grown Fcc Fe/Cu(100) and Fe/CaF2/Si(111)

1994 ◽  
Vol 332 ◽  
Author(s):  
M.R. Scheinfein ◽  
S.D. Healy ◽  
K.R. Heim ◽  
Z.J. Yang ◽  
J.S. Drucker ◽  
...  

ABSTRACTWe have used nanometer spatial resolution secondary electron and Auger electron imaging in an ultra-high vacuum scanning transmission electron microscope to characterize microstructure in ultrathin films of Fe/Cu(100) grown at room temperature and Fe/CaF2/Si(111) grown at room temperature and 150 C. Thin film microstructure was correlated in situ with magnetic properties by using the surface magneto-optic Kerr effect.

Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1274-1275
Author(s):  
Guang-Wen Zhou ◽  
Mridula D.Bharadwaj ◽  
Judith C.Yang

In the study of metal oxidation, there is a wide gap between information provided by surface science methods and that provided by bulk oxidation studies. The former have mostly examined the adsorption of up to ∽1 monolayer (ML) of oxygen on the metal surface, where as both low and high temperature bulk oxidation studies have mainly focused on the growth of an oxide layer at the later stages of oxidation. Hence, we are visualizing the initial oxidation stages of a model metal system by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM), where the surfaces are atomically clean, in order to gain new understanding of these ambiguous stages of oxidation. We have previously studied the growth of Cu2O islands during initial oxidation of Cu(100) film. We are presently investigating the initial stages of Cu(110) oxidation, from 10−4 Torr O2 to atmospheric pressures and temperature range from room temperature to 700 °C.


2006 ◽  
Vol 12 (S02) ◽  
pp. 1366-1367 ◽  
Author(s):  
K Furuya ◽  
K Mitsuishi ◽  
M Tanaka ◽  
M Takeguchi ◽  
Y Kondo ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


1990 ◽  
Vol 202 ◽  
Author(s):  
Frank C. H. Luo ◽  
Gary G. Hembree ◽  
John A. Venables

ABSTRACTThe initial growth of Ag on reconstructed Si(100) has been studied with biassed secondary electron imaging (b-SEI) and Auger electron spectroscopy (AES) in an ultra-high vacuum (UHV) scanning transmission microscope (STEM) with nanometer resolution. Small Ag islands have been observed with strong contrast in b-SE images. Anisotropic growth, correlated with the (2×1) and (1×2) dimer reconstruction, is seen at room temperature and sub-monolayer (ML) coverage. Large Ag islands (∼1 μm) formed at 475 °C substrate temperature have even more dramatic forms with large aspect ratios. The Stranski-Krastanov (SK) mode is confirmed at both temperatures by AES and b-SEI between the islands, with the intermediate layer coverage equal to 0.5 ML or less.


2005 ◽  
Vol 907 ◽  
Author(s):  
Kuan-Chia Chen ◽  
Chien-Neng Liao ◽  
Wen-Wei Wu ◽  
Lih-Juann Chen

AbstractElectromigration (EM) in unpassivated copper lines at room temperature has been investigated in ultra-high vacuum by in-situ transmission electron microscopy (TEM). The electric current induced atomic migration in a (211)-oriented Cu grain has been successfully recorded in real-time video. The atomic image of the (211) grain was found to vanish directionally when applying an electric current density of 2 × 106 A/cm2 through the Cu line. The results suggested that the combination of {111} planes and <110> directions to be the easiest EM path in crystalline copper. By performing selective area diffraction (SAD) analysis on a single Cu grain with (111) crystal orientation, some unusual electron diffraction patterns appeared after passing an electric current through the Cu line. It is believed that the EM-induced Cu twinning may be held responsible for the unique diffraction patterns


Author(s):  
A. J. Bleeker ◽  
P. Kruit

Combining of the high spatial resolution of a Scanning Transmission Electron Microscope and the wealth of information from the secondary electrons and Auger spectra opens up new possibilities for materials research. In a prototype instrument at the Delft University of Technology we have shown that it is possible from the optical point of view to combine STEM and Auger spectroscopy [1]. With an Electron Energy Loss Spectrometer attached to the microscope it also became possible to perform coincidence measurements between the secondary electron signal and the EELS signal. We measured Auger spectra of carbon aluminium and Argon gas showing energy resolutions better than 1eV [2]. The coincidence measurements on carbon with a time resolution of 5 ns yielded basic insight in secondary electron emission processes [3]. However, for serious Auger spectroscopy, the specimen needs to be in Ultra High Vacuum. ( 10−10 Torr ). At this moment a new setup is in its last phase of construction.


Author(s):  
D. R. Liu ◽  
D. B. Williams

The secondary electron imaging technique in a scanning electron microscope (SEM) has been used first by Millman et al. in 1987 to distinguish between the superconducting phase and the non-superconducting phase of the YBa2Cu3O7-x superconductors. They observed that, if the sample was cooled down below the transition temperature Tc and imaged with secondary electrons, some regions in the image would show dark contrast whereas others show bright contrast. In general, the contrast variation of a SEM image is the variation of the secondary electron yield over a specimen, which in turn results from the change of topography and conductivity over the specimen. Nevertheless, Millman et al. were able to demonstrate with their experimental results that the dominant contrast mechanism should be the conductivity variation and that the regions of dark contrast were the superconducting phase whereas the regions of bright contrast were the non-superconducting phase, because the latter was a poor conductor and consequently, the charge building-up resulted in high secondary electron emission. This observation has since aroused much interest amoung the people in electron microscopy and high Tc superconductivity. The present paper is the preliminary report of our attempt to carry out the secondary electron imaging of this material in a scanning transmission electron microscope (STEM) rather than in a SEM. The advantage of performing secondary electron imaging in a TEM is obvious that, in a TEM, the spatial resolution is higher and many more complementary techniques, e.g, diffraction contrast imaging, phase contrast imaging, electron diffraction and various microanalysis techniques, are available.


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.


Sign in / Sign up

Export Citation Format

Share Document