Predictive Surface Kinetic Analysis: The Case of TiSi2 CVD

1993 ◽  
Vol 334 ◽  
Author(s):  
M. A. Mendicino ◽  
R. P. Southwell ◽  
E. G. Seebauer

Recently, TiSi2 has been the object of considerable study because of its low resistivity among the transition metal silicides and its compatibility with existing ULSI technology [1,2]. Film growth by CVD offers the potential for selective area deposition and high production throughput. However, selective CVD of TiSi2 from gas phase SiH4 and TiCl4 is usually accompanied by a competing reaction which consumes intolerable amounts of the Si substrate [3,4]. Controlling this consumption is crucial in TiSi2 growth; however, no quantitative correlation exists between silicon consumption and growth conditions or film thickness. Additionally, the reaction mechanism for TiSi2 growth is poorly understood, and some disagreement even exists about the reaction stoichiometry [5,6]. The combined CVD/UHV approach we have developed fills many gaps in the current understanding of TiSi2 CVD.

1992 ◽  
Vol 282 ◽  
Author(s):  
Seong-Don Hwang ◽  
S. S. Kher ◽  
J. T. Spencer ◽  
P. A. Dowben

ABSTRACTIt has been demonstrated that copper can be selectively deposited on a variety of substrates including Teflon (polytetrafluroethylene or PTFE), Kapton (polyimide resin), silicon and gallium arsnide from solution by photo-assisted initiated deposition. A copper containing solution was prepared from a mixture of copper(I) chloride (Cu2Ci2) and decaborane (B10H14) in diethyl ether and/or THF (tetrahydrofuran). The copper films were fabricated by ultraviolet photolytic decomposition of copper chloride and polyhedral borane clusters. This liquid phase deposition has a gas-phase cluster analog that also results in copper deposition via pyrolysis. The approach of depositing metal thin films selectively by pholysis from solution is a novel and an underutilized approach to selective area deposition.


1989 ◽  
Vol 161 ◽  
Author(s):  
D.L. Dreifus ◽  
Y. Lansari ◽  
J.W. Han ◽  
S. Hwang ◽  
J.W. Cook ◽  
...  

ABSTRACTII-VI semiconductor surface passivants, insulators, and epitaxial films have been deposited onto selective surface areas by employing a new masking and lift-off technique. The II-VI layers were grown by either conventional or photoassisted molecular beam epitaxy (MBE). CdTe has been selectively deposited onto HgCdTe epitaxial layers as a surface passivant. Selective-area deposition of ZnS has been used in metal-insulator-semiconductor (MIS) structures. Low resistance ohmic contacts to p-type CdTe:As have also been realized through the use of selectively-placed thin films of the semi-metal HgTe followed by a thermal evaporation of In. Epitaxial layers of HgTe, HgCdTe, and HgTe-CdTe superlattices have also been grown in selective areas on CdZnTe substrates, exhibiting specular morphologies and double-crystal x-ray diffraction rocking curves (DCXD) with full widths at half maximum (FWHMs) as narrow as 140 arcseconds.


2021 ◽  
Vol 11 (4) ◽  
pp. 1801
Author(s):  
Takuro Fujii ◽  
Tatsurou Hiraki ◽  
Takuma Aihara ◽  
Hidetaka Nishi ◽  
Koji Takeda ◽  
...  

The rapid increase in total transmission capacity within and between data centers requires the construction of low-cost, high-capacity optical transmitters. Since a tremendous number of transmitters are required, photonic integrated circuits (PICs) using Si photonics technology enabling the integration of various functional devices on a single chip is a promising solution. A limitation of a Si-based PIC is the lack of an efficient light source due to the indirect bandgap of Si; therefore, hybrid integration technology of III-V semiconductor lasers on Si is desirable. The major challenges are that heterogeneous integration of III-V materials on Si induces the formation of dislocation at high process temperature; thus, the epitaxial regrowth process is difficult to apply. This paper reviews the evaluations conducted on our epitaxial growth technique using a directly bonded III-V membrane layer on a Si substrate. This technique enables epitaxial growth without the fundamental difficulties associated with lattice mismatch or anti-phase boundaries. In addition, crystal degradation correlating with the difference in thermal expansion is eliminated by keeping the total III-V layer thickness thinner than ~350 nm. As a result, various III-V photonic-device-fabrication technologies, such as buried regrowth, butt-joint regrowth, and selective area growth, can be applicable on the Si-photonics platform. We demonstrated the growth of indium-gallium-aluminum arsenide (InGaAlAs) multi-quantum wells (MQWs) and fabrication of lasers that exhibit >25 Gbit/s direct modulation with low energy cost. In addition, selective-area growth that enables the full O-band bandgap control of the MQW layer over the 150-nm range was demonstrated. We also fabricated indium-gallium-arsenide phosphide (InGaAsP) based phase modulators integrated with a distributed feedback laser. Therefore, the directly bonded III-V-on-Si substrate platform paves the way to manufacturing hybrid PICs for future data-center networks.


1997 ◽  
Vol 467 ◽  
Author(s):  
Fumio Yoshizawa ◽  
Kunihiro Shiota ◽  
Daisuke Inoue ◽  
Jun-ichi Hanna

ABSTRACTPolycrystalline SiGe (poly-SiGe) film growth by reactive thermal CVD with a gaseous mixture of Si2H6 and GeF4 was investigated on various substrates such as Al,Cr, Pt, Si, ITO, ZnO and thermally grown SiO2.In Ge-rich film growth, SEM observation in the early stage of the film growth revealed that direct nucleation of crystallites took place on the substrates. The nucleation was governed by two different mechanisms: one was a heterogeneous nucleation on the surface and the other was a homogeneous nucleation in the gas phase. In the former case, the selective nucleation was observed at temperatures lower than 400°C on metal substrates and Si, where the activation of adsorbed GeF4 on the surface played a major role for the nuclei formation, leading to the selective film growth.On the other hand, the direct nucleation did not always take place in Si-rich film growth irrespective of the substrates and depended on the growth rate. In a growth rate of 3.6nm/min, the high crystallinity of poly-Si0.95Ge0.05in a 220nm-thick film was achieved at 450°C due to the no initial deposition of amorphous tissue on SiO2 substrates.


2005 ◽  
Vol 483-485 ◽  
pp. 25-30 ◽  
Author(s):  
Peter J. Wellmann ◽  
Thomas L. Straubinger ◽  
Patrick Desperrier ◽  
Ralf Müller ◽  
Ulrike Künecke ◽  
...  

We review the development of a modified physical vapor transport (M-PVT) growth technique for the preparation of SiC single crystals which makes use of an additional gas pipe into the growth cell. While the gas phase composition is basically fixed in conventional physical vapor transport (PVT) growth by crucible design and temperature field, the gas inlet of the MPVT configuration allows the direct tuning of the gas phase composition for improved growth conditions. The phrase "additional" means that only small amounts of extra gases are supplied in order to fine-tune the gas phase composition. We discuss the experimental implementation of the extra gas pipe and present numerical simulations of temperature field and mass transport in the new growth configuration. The potential of the growth technique will be outlined by showing the improvements achieved for p-type doping of 4H-SiC with aluminum, i.e. [Al]=9⋅1019cm-3 and ρ<0.2Ωcm, and n-type doping of SiC with phosphorous, i.e. [P]=7.8⋅1017cm-3.


2004 ◽  
Vol 811 ◽  
Author(s):  
Koji Kita ◽  
Masashi Sasagawa ◽  
Masahiro Toyama ◽  
Kentaro Kyuno ◽  
Akira Toriumi

ABSTRACTHfO2 films were deposited by reactive sputtering on Ge and Si substrates simultaneously, and we found not only the interface layer but the HfO2 film was thinner on Ge substrate compared with that on Si substrate. A metallic Hf layer has a crucial role for the thickness differences of both interface layer and HfO2 film, since those thickness differences were observed only when an ultrathin metallic Hf layer was predeposited before HfO2 film deposition. The role of metallic Hf is understandable by assuming a formation of volatile Hf-Ge-O ternary compounds at the early stage of film growth. These results show an advantage of HfO2/Ge over HfO2/Si systems from the viewpoint of further scaling of electrical equivalent thickness of the gate oxide films.


1996 ◽  
Vol 448 ◽  
Author(s):  
Frank Y.C. Hui ◽  
Gyula Eres

AbstractA novel method for generating lateral features by patterning the naturally forming surface hydride layer on Si is described. Because of the relatively strong chemical bonding between silicon and hydrogen, the hydride layer acts as a robust passivation layer with essentially zero surface mobility at ordinary temperatures. A focused electron beam from a scanning electron microscope was used for patterning. Upon losing the hydrogen passivation the silicon surface sites become highly reactive. Ideally, the lifetime of such a pattern in a clean environment should be infinite. Deliberate exposure of the entire wafer to a suitable gas phase precursor results in selective area film growth on the depassivated pattern. Linewidths and feature sizes of silicon dioxide on silicon below 100 nm were achieved upon exposure to air. The silicon dioxide is robust and allows effective pattern transfer by anisotropic wet-chemical etching. In this paper, the mechanism of hydrogen desorption and subsequent pattern formation, and the factors that govern the ultimate pattern resolution will be discussed.


2019 ◽  
Vol 19 (2) ◽  
pp. 672-677 ◽  
Author(s):  
Raju Ahmed ◽  
Anwar Siddique ◽  
Jonathan Anderson ◽  
Chris Engdahl ◽  
Mark Holtz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document