Hydrogen Ion Beam Processing of Single Crystal Diamond Chips

1994 ◽  
Vol 354 ◽  
Author(s):  
Shuji Kiyohara ◽  
Iwao Miyamoto

AbstractIn order to apply ion beam etching with hydrogen ions to the ultra-precision processing of diamond tools, hydrogen ion beam etching characteristics of single crystal diamond chips with (100) face were investigated. The etching rate of diamond for 500 eV and 1000 eV hydrogen ions increases with the increase of the ion incidence angle, and eventually reaches a maximum at the ion incidence angle of approximately 50°, then may decrease with the increase of the ion incidence angle. The dependence of the etching rate on the ion incidence angle of hydrogen ions is fairly similar to that obtained with argon ions. Furthermore, the surface roughness of diamond chips before and after hydrogen ion beam etching was evaluated using an atomic force microscope. Consequently, the surface roughness after hydrogen ion beam etching decreases with the increase of the ion incidence angle within range of the ion incidence angle of 60°.

2019 ◽  
Vol 92 ◽  
pp. 248-252 ◽  
Author(s):  
Sichen Mi ◽  
Adrien Toros ◽  
Teodoro Graziosi ◽  
Niels Quack

1999 ◽  
Vol 4 (S1) ◽  
pp. 769-774 ◽  
Author(s):  
C. Flierl ◽  
I.H. White ◽  
M. Kuball ◽  
P.J. Heard ◽  
G.C. Allen ◽  
...  

We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching – a well-established technique for optical mask repair and for IC failure analysis and repair – without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5 × 10−4 μm3/pC. At a current of 3nA, for example, this corresponds to an each rate of 1.05 μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1 μm. Change in the roughness of the etched surface plane stay below 8nm.


2006 ◽  
Vol 315-316 ◽  
pp. 852-855 ◽  
Author(s):  
Cheng Yong Wang ◽  
C. Chen ◽  
Yue Xian Song

In order to achieve the smooth surface of diamond, several kinds of mixture oxidizing agents have been used to polish the single crystal diamond by a designed polishing apparatus. The existing of graphite and amorphous carbon has been found in the surface of diamond after polishing. The mechanochemical actions of oxidizing agents and the polishing iron plate have been proved. The mixture of oxidizing agents can decrease the polishing temperature so that the super-smooth surface of single crystal diamond can be achieved at lower temperature. The method provided is benefit not only to simplify polishing device and control the polishing process, but also to improve the removal rate and surface roughness.


2018 ◽  
Vol 1 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Zhongdu He ◽  
Zongwei Xu ◽  
Mathias Rommel ◽  
Boteng Yao ◽  
Tao Liu ◽  
...  

In order to investigate the damage in single-crystal 6H-silicon carbide (SiC) in dependence on ion implantation dose, ion implantation experiments were performed using the focused ion beam technique. Raman spectroscopy and electron backscatter diffraction were used to characterize the 6H-SiC sample before and after ion implantation. Monte Carlo simulations were applied to verify the characterization results. Surface morphology of the implantation area was characterized by the scanning electron microscope (SEM) and atomic force microscope (AFM). The ‘swelling effect’ induced by the low-dose ion implantation of 1014−1015 ions cm−2 was investigated by AFM. The typical Raman bands of single-crystal 6H-SiC were analysed before and after implantation. The study revealed that the thickness of the amorphous damage layer was increased and then became saturated with increasing ion implantation dose. The critical dose threshold (2.81 × 1014−3.26 × 1014 ions cm−2) and saturated dose threshold (˜5.31 × 1016 ions cm−2) for amorphization were determined. Damage formation mechanisms were discussed, and a schematic model was proposed to explain the damage formation.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1080
Author(s):  
Julia Heupel ◽  
Maximilian Pallmann ◽  
Jonathan Körber ◽  
Rolf Merz ◽  
Michael Kopnarski ◽  
...  

The development of quantum technologies is one of the big challenges in modern research. A crucial component for many applications is an efficient, coherent spin–photon interface, and coupling single-color centers in thin diamond membranes to a microcavity is a promising approach. To structure such micrometer thin single-crystal diamond (SCD) membranes with a good quality, it is important to minimize defects originating from polishing or etching procedures. Here, we report on the fabrication of SCD membranes, with various diameters, exhibiting a low surface roughness down to 0.4 nm on a small area scale, by etching through a diamond bulk mask with angled holes. A significant reduction in pits induced by micromasking and polishing damages was accomplished by the application of alternating Ar/Cl2 + O2 dry etching steps. By a variation of etching parameters regarding the Ar/Cl2 step, an enhanced planarization of the surface was obtained, in particular, for surfaces with a higher initial surface roughness of several nanometers. Furthermore, we present the successful bonding of an SCD membrane via van der Waals forces on a cavity mirror and perform finesse measurements which yielded values between 500 and 5000, depending on the position and hence on the membrane thickness. Our results are promising for, e.g., an efficient spin–photon interface.


1997 ◽  
Vol 468 ◽  
Author(s):  
Jae-Won Lee ◽  
Hyong-Soo Park ◽  
Yong-Jo Park ◽  
Myong-Cheol Yoo ◽  
Tae-Il Kim ◽  
...  

ABSTRACTDry etching characteristics of GaN using reactive ion beam etching (RIBE) were studied. Etching profile, etching rate and etching selectivity to a photoresist (PR) mask were investigated as a function of various etching parameters. Characteristics of chemically assisted reactive ion beam etching (CARIBE) and RIBE were compared at varied mixtures of CH4 and Cl2. A highly anisotropie etching profile with a smooth surface was obtained for tilted RIBE with Ch at room temperature. Etching selectivity to a PR was dramatically improved in RIBE and CARIBE when a volume fraction of CH4 to the mixture of CH4 and Ch was larger than 0.83.


Sign in / Sign up

Export Citation Format

Share Document