UV-Visible-IR Electroluminescence from Si and Ge Nanocrystals in a Wider Bandgap Matrix

1994 ◽  
Vol 358 ◽  
Author(s):  
G.S. Tompa ◽  
D.C. Morton ◽  
B.S. Sywe ◽  
Y. Lu ◽  
E.W. Forsythe ◽  
...  

ABSTRACTThe demonstration of photoluminescence (PL) and electroluminescence (EL) in nanostructures of Si or Ge, such as those found in porous silicon, has significantly improved the prospects of all Si based photonic devices. While the physical mechanisms at work are still a subject of much study, it is clear that the luminescence is associated with the formation of nanometer or “quantum” sized particles. Further, it is clear that prototype NanoCrystal Displays (NCDs) and communication devices are being fabricated in these material systems. We report here on the electroluminescent properties of nanometer sized particles in an SiO2 host matrix, which were fabricated by LPCVD techniques. The films have demonstrated reproducible emission from well below 400 nm to well above 800 nm. We believe that dispersion effects of the nanocrystals can account for "white" light emission. The films have been characterized using PL, Raman, XRD, TEM, and SIMS. The nanocrystals are primarily in the 2-7 nm range although larger crystal clusters are also observed. The development of stable and efficient Si or Ge nanocrystalline EL based devices could find applications in lamps/LEDs, photonic integrated circuits, and displays.

2012 ◽  
Vol 60 (4) ◽  
pp. 683-689
Author(s):  
R. Piramidowicz ◽  
S. Stopiński ◽  
K. Ławniczuk ◽  
K. Welikow ◽  
P. Szczepański ◽  
...  

Abstract In this work a brief review on photonic integrated circuits (PICs) is presented with a specific focus on integrated lasers and amplifiers. The work presents the history of development of the integration technology in photonics and its comparison to microelectronics. The major part of the review is focused on InP-based photonic integrated circuits, with a short description of the potential of the silicon technology. A completely new way of fabrication of PICs, called generic integration technology, is presented and discussed. The basic assumption of this approach is the very same as in the case of electronic circuits and states that a limited set of standard components, both active and passive, enables designing of a complex, multifunctional PIC of every type. As a result, functionally advanced, compact, energy efficient and cost-optimized photonic devices can be fabricated. The work presents also selected examples of active PICs like multiwavelength laser sources, discretely tunable lasers, WDM transmitters, ring lasers etc.


2011 ◽  
Vol 19 (27) ◽  
pp. 26936 ◽  
Author(s):  
Gyungock Kim ◽  
Jeong Woo Park ◽  
In Gyoo Kim ◽  
Sanghoon Kim ◽  
Sanggi Kim ◽  
...  

2016 ◽  
Vol 6 (12) ◽  
pp. 426 ◽  
Author(s):  
Lee Carroll ◽  
Jun-Su Lee ◽  
Carmelo Scarcella ◽  
Kamil Gradkowski ◽  
Matthieu Duperron ◽  
...  

Author(s):  
Kondaveeti Muralikrishna ◽  
ShafiShahsavar Mirza ◽  
Satbir Singh Dhula

For processing of desired information, the present-day electronic equipment is rapidly approaching their ultimate speed and bandwidth constraints, which is an ever more serious problem that prevents their persistent use in applications. It is believed that a promising solution is to fabricate electronic and photonic elements on a single chip. This mechanism provides a larger bandwidth that is used to construct new hybrid electronic photonic devices. In this paper the numerical analysis and design of metal-insulator-metal plasmonic directional coupler are presented. In dual optical bands, this directional coupler design needed the concept of the step impedance resonators (SIRs). Without reducing the subsystems, the enhanced architectures that pertain to filtering as well as multiplexing devices are necessary for conclusion of these kinds of specifications. Photonic-integrated circuits (PICs) have effectively improved their work by present design directional coupler, and it can be mixed with the conventional silicon PICs.


Author(s):  
Thierry Parrassin ◽  
Sylvain Dudit ◽  
Michel Vallet ◽  
Antoine Reverdy ◽  
Hervé Deslandes

Abstract By adding a transmission grating into the optical path of our photon emission system and after calibration, we have completed several failure analysis case studies. In some cases, additional information on the emission sites is provided, as well as understanding of the behavior of transistors that are associated to the fail site. The main application of the setup is used for finding and differentiating easily related emission spots without advance knowledge in light emission mechanisms in integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document