High Temperature Creep of Alpha-2 Ti-34mo1%Al Polycrystals

1994 ◽  
Vol 364 ◽  
Author(s):  
Hiroshi Oikawa ◽  
Toshihiko Fukuda ◽  
Makoto Ohtsuka

AbstractConstant-stress compressive creep tests were carried out on an Al-rich a2 single-phase material, which had equiaxed-grains of 60μim in grain size, at 1050∼1250 K under 100∼500MPa. The type of the primary creep stage and the microstructures developed during creep depend greatly on the creep condition. The minimum creep-rate, however, can be represented by one set of parameters over the whole range of experimental condition. The stress exponent is 5.0±0.2 and the (modulus-compensated) activation energy is 360 ± 10kJ/mol. The Dorn-type plot of the minimum creep rate reveals that the normalized creep strength of fine-grained Ti-34mol%Al is not greatly different from that of disordered solid-solution hardened alloys.

1978 ◽  
Vol 100 (4) ◽  
pp. 363-370 ◽  
Author(s):  
J. H. Laflen ◽  
D. C. Stouffer

The general objective of the research reported is to develop a constitutive theory for the elevated temperature behavior of Wrought Udiment 700. A major part of this work was to establish a data base for this material and evaluate the observed response using many of the modern approaches to constitutive modeling. The phenomenological description of the material was evaluated by a series of load rate, strain rate, and creep tests. These data clearly showed the existence of a finite primary creep rate response function similar to the minimum creep rate function. Also the concept of material stress rate coordinate is introduced to describe the change from the primary to the minimum creep rate.


2000 ◽  
Vol 646 ◽  
Author(s):  
Wolfram Schillinger ◽  
Dezhi Zhang ◽  
Gerhard Dehm ◽  
Arno Bartels ◽  
Helmut Clemens

ABSTRACTγ-T1AI (Cr, Mo, Si, B) specimens with two different fine lamellar microstructures were produced by vacuum arc melting followed by a two-stage heat treatment. The average lamellar spacing was determined to be 200 nm and 25–50 nm, respectively. Creep tests at 700°C showed a very strong primary creep for both samples. After annealing for 24 hours at 1000 °C the primary creep for both materials is significantly decreased. The steady-state creep for the specimens with the wider lamellar spacing appears to be similar to the creep behavior prior to annealing while the creep rate of the material with the previously smaller lamellar spacing is significantly higher. Optical microscopy and TEM-studies show that the microstructure of the specimens with the wider lamellar specing is nearly unchanged, whereas the previously finer material was completely recrystallized to a globular microstructure with a low creep resistance. The dissolution of the fine lamellar microstructure was also observed during creep tests at 800 °C as manifested in an acceleration of the creep rate. It is concluded that extremely fine lamellar microstructures come along with a very high dislocation density and internal stresses which causes the observed high primary creep. The microstructure has a composition far away from the thermodynamical equilibrium which leads to a dissolution of the structure even at relatively low temperatures close to the intended operating temperature of γ-T1AI structural parts. As a consequence this limits the benefit of fine lamellar microstructures on the creep behavior.


2016 ◽  
Vol 853 ◽  
pp. 163-167
Author(s):  
Fa Cai Ren ◽  
Xiao Ying Tang

Creep deformation behavior of SA387Gr91Cl2 heat-resistant steel used for steam cooler has been investigated. Creep tests were carried out using flat creep specimens machined from the normalized and tempered plate at 973K with stresses of 100, 125 and 150MPa. The minimum creep rate and rupture time dependence on applied stress was analyzed. The analysis showed that the heat-resistant steel obey Monkman-Grant and modified Monkman-Grant relationships.


1994 ◽  
Vol 364 ◽  
Author(s):  
M. F. Bartholomeusz ◽  
J. A. Wert

AbstractEnhanced work hardening of the phases in the lamellar microstructure has been cited as an explanation for the lower minimum creep rates of a two-phase TiAl/Ti3Al lamellar alloy compared with the minimum creep rates of the individual TiAl and Ti3Al single-phase alloys tested between 980 K and 1130 K. This proposition is confirmed by TEM observations. Thermal and thermomechanical exposure result in the microstructural evolution, which increases the minimum creep rate (εmin) of the lamellar alloy. The effect of microstructural evolution on εmin will be discussed in the present paper.


1994 ◽  
Vol 19 ◽  
pp. 146-154 ◽  
Author(s):  
T. H. Jacka

Laboratory results are presented concerning ice creep at minimum creep rate (at ~1% strain) for fine-grained, initially isotropic, polycrystalline samples. The effect on the creep rate of ice density, sample shape (aspect ratio) and size, grain-size and ratio of grain-size to sample size is examined. Provided sample density is above ~0.83 Mg m−3 (i.e. the close-off density), there is no effect of density on ice-creep rate. Results provide no evidence of a creep rate dependence on test sample length for cylindrical samples. Sample diameter, however, does affect creep rate. Over the range of sample diameters studied (16.2 to 90 mm) creep rate decreases monotonically by a factor of ~4. This effect is independent of sample aspect ratio. Experiments examining size effects in simple shear indicate no dependence of minimum flow rate on shape or size in this stress configuration. Two grain-sizes were represented within the samples tested for the effect of sample size. As expected from earlier work, no grain-size effect on minimum creep rate is evident. In addition, there was no evidence of an effect on creep rate of the ratio of grain-size to sample size.


1984 ◽  
Vol 21 (3) ◽  
pp. 518-529 ◽  
Author(s):  
J. F. Nixon ◽  
G. Lem

Little creep data is available for frozen, fine-grained saline soils. Salinity accelerates the creep rate of a frozen soil under load and reduces its shear strength owing to the higher unfrozen water contents in the pore phase. Creep data for saline fine-grained soils are required by engineers and scientists working in areas of coastal or offshore permafrost. The data are also used in projects involving artificial freezing of saline soils.This paper describes the results of 34 creep tests and 11 time-dependent strength tests carried out on saline soils. The tests were carried out for two different research programs; consequently, two different fine-grained soil types were used. Most of the tests were carried out in a constant stress and constant temperature creep test environment. Some were completed in a triaxial (constant strain rate) test format, in order to extend the data base to an area of higher strain rates. The range of temperatures was −2.3 to −25 °C, the range of stresses in the creep tests was 30–400 kPa, and the salinity was varied from 0–35 parts per thousand (ppt). Particular attention was paid to the lower stresses (30–200 kPa) and intermediate to high salinities (18–35 ppt). A high percentage of the creep tests was completed in the temperature range −5 to −10 °C, as this appears to be a typical ground temperature in coastal permafrost areas in Arctic Canada.Results indicate that the presence of pore fluid with a salinity approaching that of seawater causes a 10- to 100-fold increase in uniaxial creep rate, which can result in significant decreases in shear strength and foundation bearing capacity in saline permafrost areas.Soil resistivity tests were also carried out on frozen samples of different salinities. A strong correlation between resistivity and pore water salinity emerged. This has application in the interpretation of results from electrical resistivity surveys in permafrost. Key words: permafrost, saline, creep, strength, resistivity, fine-grained, offshore permafrost.


Author(s):  
W. David Day ◽  
Ali P. Gordon

Accurate prediction of creep deformation is critical to assuring the mechanical integrity of heavy-duty, industrial gas turbine (IGT) hardware. The classical description of the creep deformation curve consists of a brief primary, followed by a longer secondary, and then a brief tertiary creep phase. An examination of creep tests at four temperatures for a proprietary, nickel-based, equiaxed, super-alloy revealed many occasions where there is no clear transition from secondary to tertiary creep. This paper presents a new creep model for a Nickel-based super-alloy, with some similarities to the Theta Projection (TP) creep model by Evans and all [1]. The alternative creep equation presented here was developed using meaningful parameters, or θ’s, such as: the primary creep strain, time at primary creep strain, minimum (or secondary) creep rate, and time that tertiary creep begins. By plotting the first and second derivative of creep, the authors were able to develop a creep equation that accurately matches tests. This creep equation is identical to the primary creep portion of the theta projection model, but has a modified second term. An additional term is included to simulate tertiary creep. An overall scaling factor is used to satisfy physical constraints and ensure solution stability. The new model allows a constant creep rate phase to be maintained, captures tertiary creep, and satisfies physical constraints. The coefficients of the creep equations were developed using results from 27 creep tests performed at 4 temperatures. An automated routine was developed to directly fit the θ coefficients for each phase, resulting in a close overall fit for the material. The resultant constitutive creep model can be applied to components which are subjected to a wide range of temperatures and stresses. Useful information is provided to designers in the form of time to secondary and tertiary creep for a given stress and temperature. More accurate creep predictions allow PSM to improve the structural integrity of its turbine blades and vanes.


2011 ◽  
Vol 465 ◽  
pp. 443-446 ◽  
Author(s):  
Ferdinand Dobeš

High-temperature creep of a Fe3Al-type iron aluminide alloyed by niobium and different additions of carbon was studied in the temperature range from 600 to 800 °C. The alloys contained (atomic %) (i) 27.6 Al, 1.15 Nb, 0.19 C and (ii) 27.1 Al, 1.11Nb, 0.76 C (Fe balance). Creep tests were performed in compression at constant load with stepwise loading. Stress exponent and activation energy of the creep rate were determined. Creep resistance of the low-carbon alloy is better at lower temperatures, while the opposite is true at temperature of 800 °C.


Sign in / Sign up

Export Citation Format

Share Document