Local Electronic Structure and Cohesion of Grain Boundaries in Ni3Al

1994 ◽  
Vol 364 ◽  
Author(s):  
D. A. Muller ◽  
S. Subramanian ◽  
S. L. Sass ◽  
J. Silcox ◽  
P. E. Batson

AbstractOne of the fundamental questions concerning Ni3Al is why doping with boron improves the room temperature ductility of the polycrystalline material. Boron is thought to prevent environmental embrittlement and increase the cohesive strength of grain boundaries since it changes the fracture mode from intergranular to transgranular. This change in cohesive energy must be reflected in the bonding changes at the grain boundary which can be probed using spatially resolved electron energy loss spectroscopy (EELS). We have examined grain boundaries in both undoped and boron doped Ni0.76Al0.24 using EELS, EDX and ADF imaging in a UHV STEM. Ni-enrichment is seen in a 0.5–1 nm wide region at large angle grain boundaries, both in the absence and presence of B. EELS shows that B segregation can vary along the interface. The Ni L2, 3 core edge fine structure which is sensitive to the filling of the Ni d-band, shows only the boron rich regions of the grain boundary to have a bonding similar to that of the bulk material. These results demonstrate that boron segregation increases the cohesive energy and hence improves the fracture resistance of the grain boundary, by making the bonding at boundaries similar to that in the bulk. The measured changes in d band filling may also affect the local solubility of hydrogen.

1993 ◽  
Vol 319 ◽  
Author(s):  
D.A. Muller ◽  
P.E. Batson ◽  
S. Subramanian ◽  
S. L. Sass ◽  
J. Silcox

AbstractWe have examined grain boundaries in both undoped and boron doped Ni0.76Al0.24 using electron energy loss spectroscopy (EELS), x-ray fluorescence (EDX) and annular dark field (ADF) imaging in a UHV STEM. A detailed study of a high angle grain boundary in nickel rich Ni3Al doped with 1000 ppm boron shows nickel enrichment occurring in a 5Å wide region. Boron segregation to the boundary is observed with EELS and is seen to vary along the boundary, coinciding with ADF contrast changes in the surrounding grains that may be due to local strain fields. Spatially resolved EELS of the Ni L2,3 core edge, which is sensitive to changes in the hole density in the nickel d band, shows boron rich regions of the grain boundary to have a bonding similar to that of the bulk material. Boundary regions without boron have an electronic structure similar to that of the undoped grain boundaries where the Fermi level lies deeper in the nickel d band. In addition to studying boron segregation, EELS provides a unique opportunity to examine the changes in bonding that control the local properties of the material.


1993 ◽  
Vol 319 ◽  
Author(s):  
Patricia E. Johnson ◽  
W. Gourdin ◽  
A. Gonis ◽  
N. Kioussis ◽  
M. Vaudin

AbstractTo provide a sensitive measurement of the effect of boron segregation on the strength and ductility of Ni3A1 grain boundaries, bicrystal tensile tests were performed on small specimens of boron doped Ni76A124 cut from extremely large-grained boules. Five specimens with the same “random” or low-symmetry grain boundary (disorientations measured by means of backscattered Kikuchi patterns) and two specimens with a second random grain boundary were tested in quenched and slow-cooled conditions. Duplicate tests performed in a low (7 ppm) water-vapor environment showed that the fracture mode and the stress and strain at fracture are altered by environmental embrittlement at individual, partially strengthened grain boundaries.


1996 ◽  
Vol 460 ◽  
Author(s):  
Shanthi Subramanian ◽  
David A. Muller ◽  
John Silcox ◽  
Stephen. L. Sass

ABSTRACTTo obtain insight into the effect of dopants on the bonding and cohesive energy of gram boundaries in Ll2 intermetallic compounds, the chemistry and electronic structure at grain boundaries in B-free and B-doped Ni-23 at % Si alloys were examined, with electron energy loss spectroscopy (EELS) providing information on the former and energy dispersive X-ray spectroscopy (EDX) on the latter. Ni-enrichment was seen at large angle boundaries, both in the absence and presence of B. EELS of the Ni L3 edge showed that the bonding at Ni-rich grain boundaries was similar in both undoped and doped alloys. Comparison of the Ni L3 edge recorded at the grain boundary and in the bulk suggests that reduced hybridization and weaker bonding occurs at Ni-rich grain boundaries in both doped and undoped alloys. These changes in bonding are interpreted in terms of changes in the cohesive energy of the boundaries.


1998 ◽  
Vol 552 ◽  
Author(s):  
D. B. Lillig ◽  
D. Legzdina ◽  
I. M. Robertson ◽  
H. K. Birnbaum

ABSTRACTSecondary Ion Mass Spectrometry has been used to study the distribution of elements in and near grain boundaries in boron-free and boron-doped Ni76Al24 alloys with and without ∼220 wt. ppm of deuterium. In boron-free alloys, sulfur was distributed about the grain boundaries in both deuterium- free and deuterium-charged samples. The distribution of deuterium followed that of sulfur and was segregated to grain boundaries. In the boron-doped material, sulfur was not found at most grain boundaries in the uncharged material, but was in the charged material. No deuterium was found at the grain boundaries in the boron-doped material. It is proposed that in the boron-free material it is the synergistic effect of sulfur and hydrogen that is responsible for the environmental sensitivity of this alloy. In boron-doped material, boron segregation to the grain boundary prevents sulfur, and to some extent hydrogen, segregating to the grain boundary.


Author(s):  
S.J. Splinter ◽  
J. Bruley ◽  
P.E. Batson ◽  
D.A. Smith ◽  
R. Rosenberg

It has long been known that the addition of Cu to Al interconnects improves the resistance to electromigration failure. It is generally accepted that this improvement is the result of Cu segregation to Al grain boundaries. The exact mechanism by which segregated Cu increases service lifetime is not understood, although it has been suggested that the formation of thin layers of θ-CuA12 (or some metastable substoichiometric precursor, θ’ or θ”) at the boundaries may be necessary. This paper reports measurements of the local electronic structure of Cu atoms segregated to Al grain boundaries using spatially resolved EELS in a UHV STEM. It is shown that segregated Cu exists in a chemical environment similar to that of Cu atoms in bulk θ-phase precipitates.Films of 100 nm thickness and nominal composition Al-2.5wt%Cu were deposited by sputtering from alloy targets onto NaCl substrates. The samples were solution heat treated at 748K for 30 min and aged at 523K for 4 h to promote equilibrium grain boundary segregation. EELS measurements were made using a Gatan 666 PEELS spectrometer interfaced to a VG HB501 STEM operating at 100 keV. The probe size was estimated to be 1 nm FWHM. Grain boundaries with the narrowest projected width were chosen for analysis. EDX measurements of Cu segregation were made using a VG HB603 STEM.


1990 ◽  
Vol 213 ◽  
Author(s):  
C. T. Liu ◽  
E. P. George

ABSTRACTThe room-temperature tensile properties of FeAl aluminides were determined as functionsof aluminum concentration (35 to 43 at. % Al), test environment, and surface (oil) coating. The two lower aluminum alloys containing 35 and 36.5% Al are prone to severe environmental embrittlement, while the two higher aluminum alloys with 40 and 43% Al are much less sensitive to change in test environment and surface coating. The reason for the different behavior is that the grain boundaries are intrinsically weak in the higher aluminum alloys, and these weak boundaries dominate the low ductility and brittle fracture behavior of the 40 and 43% Al alloys. When boron is added to the 40% Al alloy as a grain-boundary strengthener, the environmental effect becomes prominent. In this case, the tensile ductility of the boron-doped alloy, just like that of the lower aluminum alloys, can be dramatically improved by control of test environment (e.g. dry oxygen vs air). Strong segregation of boron to the grain boundaries, with a segregation factor of 43, was revealed by Auger analyses.


2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


2013 ◽  
Vol 1514 ◽  
pp. 107-118 ◽  
Author(s):  
Karen Kruska ◽  
David W Saxey ◽  
Takumi Terachi ◽  
Takuyo Yamada ◽  
Peter Chou ◽  
...  

ABSTRACTThe preparation of site-specific atom-probe tomography (APT) samples containing localized features has become possible with the use of focused ion beams (FIBs). This technique was used to achieve the analysis of surface oxides and oxidized grain boundaries in this paper. Transmission electron microscopy (TEM), providing microstructural and chemical characterization of the same features, has also been used, revealing crucial additional information.The study of grain boundary oxidation in stainless steels and nickel-based alloys is required in order to understand the mechanisms controlling stress corrosion cracking in nuclear reactors. Samples oxidized under simulated pressurized water reactor primary water conditions were used, and FIB lift-out TEM and APT specimens containing the same oxidized grain boundary were prepared and fully characterized. The results from both techniques were found fully consistent and complementary.Chromium-rich spinel oxides grew at the surface and into the bulk material, along grain boundaries. Nickel was rejected from the oxides and accumulated ahead of the oxidation front. Lithium, which was present in small quantities in the aqueous environment during oxidation, was incorporated in the oxide. All phases were accurately quantified and the effect of different experimental parameters were analysed.


1988 ◽  
Vol 133 ◽  
Author(s):  
C. L. Briant ◽  
A. I. Taub

ABSTRACTThis paper reports a study of grain boundary segregation and fracture modes in Ll2 intermetallic compounds. Data obtained on Ni3A1, Ni3Si, Ni3Ga, Ni3Ge, and Pt3Ga will be presented. It will be shown that the amount of boron segregation and its ability to improve cohesion depends on the total composition of the compound. The beneficial effects of boron can be counteracted by the presence of borides on the grain boundaries. Carbon additions also produce some improvement in ductility in Ni3Si.


1990 ◽  
Vol 213 ◽  
Author(s):  
H. Li ◽  
A. J. Ardell

ABSTRACTThe results of miniaturized disk-bend tests on samples of Ni 3Al of different stoichiometry and boron content are presented. The yield strengths and ductilities of alloys containing 24, 25 or 26 %Al. either boron-free or doped with 0.3 or 0.35 %B, were measured. Specimens 3 mm in diameter and approximately 200 μm thick were tested, some of these having been cut from the grip sections of previously tested tensile bars. The yield strengths were in excellent agreement with the results obtained from the uniaxial tensile tests. The load-displacement curves for the brittle alloys (all but the boron-doped 24 %Al alloy) exhibited a maximum load corresponding to crack initiation. The shapes of the deformed specimens confirmed the assumption that they deform as if they were clamped even though they are not. The fracture surfaces of the brittle alloys are consistent with intergranular failure. Nevertheless, the ductility of the alloys increases with decreasing Al content and decreasing grain size, even for the boron-free alloys which are all brittle. The fracture stress of the boron-doped 26 %Al alloy is about 30% greater than that of the boron-free alloy. It is argued that this is most likely a consequence of the depletion of aluminum at grain boundaries, coupled with boron segregation. Independent evidence suggests that this should increase the cohesive strength of grain boundaries in the boron-doped 26 %Al alloy.


Sign in / Sign up

Export Citation Format

Share Document