Fabrication Method for Hollow Microspheres Made of High-Strength Glasses

1994 ◽  
Vol 372 ◽  
Author(s):  
Valery M. Dorogotovtsev

AbstractLasting storage of hydrogen, its isotopes and other gases under high (1–2 thousand atm) pressure inside hollow microspheres as well as production of low-density syntaxis poroplasts to withstand high external loads - all these need hollow microspheres of high mechanical strength. By modern commercial technology the microspheres are mainly obtained from water- soluble alkali-silicate or alkali-boro-silicate glasses. These microspheres are not strong, their strength being 1000–1500 MPa.. Besides the low resistivity to hydrolysis and chemicals also restrict their applications. To gain strength 1.5–2 times higher the additional modification of microspheres is done either by leaching, or by annealing, or by ion exchange. Microspheres of stronger glasses being usually multi-component require a technology fitted to produce highly uniform glass [1,2].A new fabrication method is presented to produce hollow microspheres of various glasses. They include simple alkali and alkali-boro-silicate glasses as well as multi-component glasses of commercially available compositions, alkali-free, refractory, and high-strength glasses.

Author(s):  
Zhenguo An ◽  
Jingjie Zhang

Low density silicate–CoNi–carbon triple shell hollow microspheres with high mechanical strength and controllable electromagnetic properties were prepared on a large scale.


2020 ◽  
Vol 14 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Dan Tian ◽  
Dan-Ni Yu ◽  
Yi-Ming Xu ◽  
Xu-Yin Ding ◽  
Zhou-Yu Zhang ◽  
...  

Background: Though there are many patents on silk, patents on sea silk are rare. Sea silk is one of the most coveted materials in the world, and the technology to make sea silk is at an extremely high risk of extinction. Unlike spider dragline silk and silkworm silk, this natural silk has been forgotten in the academic commune for millennia, though it has many fascinating properties: high strength, remarkable adhesion, extreme lightweight, and others. Method: Here we report that mussel-derived silk fibers can be fabricated by electrospinning. Instead of extracting proteins from byssus, we directly use the protein solution from alive blue mussels, which are intensely commercially used. The protein solution and the polyvinyl alcohol solution are mixed together to produce mussel-based silk fibers. Results: The mussel-based silk fibers have many special properties like high mechanical strength, remarkable super-contraction and good wetting properties. Conclusion: The electrospinning mussel-based silk fibers have the potential for use as a replacement for the rarest sea silk and as a new bio-inspired material with multi-functions.


2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 930
Author(s):  
Xiaoying Huang ◽  
Rongbin Su ◽  
Jiawei Yang ◽  
Mujie Rao ◽  
Jin Liu ◽  
...  

In this work, we successfully achieved wafer-scale low density InAs/GaAs quantum dots (QDs) for single photon emitter on three-inch wafer by precisely controlling the growth parameters. The highly uniform InAs/GaAs QDs show low density of μ0.96/μm2 within the radius of 2 cm. When embedding into a circular Bragg grating cavity on highly efficient broadband reflector (CBR-HBR), the single QDs show excellent optoelectronic properties with the linewidth of 3± 0.08 GHz, the second-order correlation factor g2(τ)=0.0322 ±0.0023, and an exciton life time of 323 ps under two-photon resonant excitation.


2011 ◽  
Vol 2 (4) ◽  
pp. 131-148 ◽  
Author(s):  
Francis Vidya ◽  
Subin S. Raghul ◽  
Sarita G Bhat ◽  
Eby Thomas Thachil

The main objective of this study was to enhance the rate of UV and biodegradation of polyethylene by incorporating biodegradable materials and prooxidants. Prooxidants such as transition metal complexes are capable of initiating photooxidation and polymer chain cleavage, rendering the product more susceptible to biodegradation. In this work, the effect of (1) a metallic photoinitiator, cobalt stearate, and (2) different combinations of cobalt stearate and vegetable oil on the photooxidative degradation of linear low-density poly(ethylene)-poly(vinyl alcohol) (LLDPE/PVA) blend films has been investigated. For this, film-grade LLDPE was blended with different proportions of PVA. PVA is widely used in the industrial field, and recently it has attracted increasing attention as a water-soluble biodegradable polymer. Cobalt stearate and vegetable oil were added to the blends as prooxidants. The blends were prepared by melt mixing in a Thermo HAAKE Polylab system. Thin films containing these additives were prepared by a subsequent compression moulding process. The effect of UV exposure on LLDPE/PVA films in the presence as well as absence of these additives was investigated. Tensile properties, FTIR spectra, and scanning electron microscopy (SEM) were employed to investigate the degradation behaviour. It was found


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


2013 ◽  
Vol 52 (16) ◽  
pp. 9184-9191 ◽  
Author(s):  
Yunhua Han ◽  
Shili Gai ◽  
Ping’an Ma ◽  
Liuzhen Wang ◽  
Milin Zhang ◽  
...  

2017 ◽  
Author(s):  
Dharmesh Talong ◽  
Animesh Kumar ◽  
Arindam Sarma ◽  
Kuhu Priyamvada ◽  
Vaibhav Tyagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document