Digital Optical Imaging Of Benzocyclobutene (Bcb) Thin Films On Silicon Wafers

1995 ◽  
Vol 381 ◽  
Author(s):  
Robert A. DeVries ◽  
Reed A. Shick ◽  
Bethany K. Johnson

AbstractA practical, low-cost research system for the fluorescent optical imaging of BCB (DVS-bisBCB) thin films has been used for the first time to evaluate coating quality on spin coated silicon wafers. In general, DVS-bisBCB thin films are easily produced defect free with a high degree of planarization. Various features of the coating are enhanced visually by the fluorescence making detection, digital storage, and quantification easier. Examples of features found in defective coatings made intentionally by a process to generate several common thin film defects are variations in film thickness, foreign particles, pinholes, and residual polymer in vias. The fluorescent bands of the normally transparent resin are easily excited in the near UV with a mercury lamp, causing a semi-opaque visible emission which could be observed by conventional imaging hardware. The BCB fluorescent quantum yield, or efficiency, is similar to fluorescent dyes so that only a small amount of BCB need be present in a substrate to allow optical inspection.This strong fluorescent property of DVS-bisBCB polymer, not possessed by many polyimide resins, could reduce labor costs of manual inspections and improve multichip module (MCM) processing yields. This digital imaging technique has potential for further development as a cost-effective automated optical inspection (AOI) method.

2021 ◽  
Author(s):  
Jenn-Kun Kuo ◽  
Jun-Jia Wu ◽  
Pei-Hsing Huang ◽  
Chin-Yi Cheng

Abstract Investment castings often have surface impurities and pieces of shell molds can remain on the surface after sandblasting. Identification of defects involves time-consuming manual inspections in working environments of high noise and poor air quality. To reduce labor costs and increase the health and safety of employees, we applied automated optical inspection (AOI) combined with a deep learning framework based on convolutional neural networks (CNNs) to the detection of sandblasting defects. We applied the following four classic CNN models for training and predictive classification: AlexNet, VGG-16, GoogLeNet, and ResNet-34. In terms of predictive classification, AlexNet, VGG-16, and GoogLeNet v1 could accurately determine whether there were defects. Among the four models, AlexNet was the most accurate, with prediction accuracy of 99.53% for qualifying products and 100% for defective products. We demonstrate a direct detection technique based on the AOI and CNN structure with a fast and flexible computational interface.


RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 9983-9992 ◽  
Author(s):  
Inyalot Jude Tadeo ◽  
Emma P. Mukhokosi ◽  
Saluru B. Krupanidhi ◽  
Arun M. Umarji

We report detailed structural, electrical transport and IR photoresponse properties of large area VO2(M1) thin films deposited by a simple cost-effective two-step technique.


2004 ◽  
Vol 822 ◽  
Author(s):  
S.R. Das ◽  
N.K. Karan ◽  
S.B. Majumder ◽  
R.S. Katiyar

AbstractThe spinel structured lithium manganate (LMO) is a promising cathode material for lithium ion rechargeable micro-batteries due to its higher energy density, environmentally benign nature, and low cost. To date, self-discharge and capacity fading (4 and 3V range), especially at elevated temperatures, still remains major research issues of LMO based cathodes. In the present work we have successfully synthesized lithium manganate thin films by a cost effective solution growth technique. These films exhibited excellent reversible lithium ion intercalation behavior with a discharge capacity of about 55.08:Ahcm−2:m−1 at a load of 20:Acm−2. The Li+ diffusivity was found to increase by substituting a part of manganese with aluminum (Al) in LMO lattice. Al substituted LMO films exhibited better cycleability as compared to the undoped LMO films. Further studies are in progress to investigate the effect of Al substitution on the cycleability of the films.


2004 ◽  
Vol 14 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Hilary A. Sandler ◽  
Carolyn J. DeMoranville ◽  
Wesley R. Autio

A 2-year field trial examined the interaction of nitrogen rate, vine density, and weed management options for establishing new cranberry (Vaccinium macrocarpon) plantings. Utilizing the vigorous hybrid, `Stevens', the cost-efficiency of the treatment combinations was evaluated by combining cranberry and weed biomass data with various economic estimates. The most cost-effective production scheme for establishing new cranberry beds is to plant vines at a low density, use moderate rates of nitrogen, and apply an annual application of a preemergence herbicide. This combination produced substantial vine coverage at very low cost, reduced weed biomass by 85% compared to untreated plots, and gave the best weed control per dollar spent. Growers may opt for other reasonably successful combinations that involve higher labor costs if they can produce their own cuttings (reducing initial costs) or if they are farming with the intent to reduce overall synthetic inputs.


2012 ◽  
Vol 512-515 ◽  
pp. 198-201
Author(s):  
Shi Yang Sun ◽  
Jian Ping Long ◽  
Bo Zhang

Besides silicon wafers, the metallization of solar cells is the most expensive process in the mass production of solar cells nowadays. Therefore, the development of cost-effective metallization technologies is very important for the reduction of manufacturing cost. In this article, we will introduce two novel approaches for the metallization of c-Si solar cells: (i) electroless plated Ni and electroplated Cu; (ii) photoplated Ni and Cu. It is believed that high efficiency and low cost solar cells can be fabricated taking advantages of the improved metallization methods.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


2016 ◽  
Vol 55 (02) ◽  
pp. 51-62 ◽  
Author(s):  
S. Hermann ◽  
M. Schäfers ◽  
C. Höltke ◽  
A. Faust

SummaryOptical imaging has long been considered a method for histological or microscopic investigations. Over the last 15 years, however, this method was applied for preclinical molecular imaging and, just recently, was also able to show its principal potential for clinical applications (e.g. fluorescence-guided surgery). Reviewing the development and preclinical evaluation of new fluorescent dyes and target-specific dye conjugates, these often show characteristic patterns of their routes of excretion and biodistribution, which could also be interesting for the development and optimization of radiopharmaceuticals. Especially ionic charges show a great influence on biodistribution and netcharge and charge-distribution on a conjugate often determines unspecific binding or background signals in liver, kidney or intestine, and other organs.Learning from fluorescent probe behaviour in vivo and translating this knowledge to radio-pharmaceuticals might be useful to further optimize emerging and existing radiopharmaceuticals with respect to their biodistribution and thereby availability for binding to their targets.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Sign in / Sign up

Export Citation Format

Share Document