Vibrational and Electronic Transition in InAs Quantum Dots Formed by Sequential Implantation of in and as in a-SiO2

1995 ◽  
Vol 396 ◽  
Author(s):  
A. Ueda ◽  
D.O. Henderson ◽  
R. Mu ◽  
Y.-S. Tung ◽  
C. Hall ◽  
...  

AbstractThe optical, structural, and thermodynamic properties of materials can be changed by reducing their dimensions. We sequentially implanted In and As into fused silica windows in order to investigate the formation and properties of InAs nano-particles. The UV/VIS/NIR, FTIR in mid-IR, and far-IR spectroscopy were mainly used to study the change in electronic transitions and in vibrational modes (phonons) of the nanoparticle InAs. The phonons can be confined to the surface of nanoparticles and have frequencies falling between the transverse and longitudinal optical modes of the bulk material. Thermal annealing developed the formation of InAs quantum dots from as-implanted In+As system. At a certain annealing temperature, we observed a change in UV/VIS transmission spectra and IR reflectance spectra indicating the formation of InAs quantum dots. This is particularly evident from the absorption in the IR, and surface phonon bands are observed confirming the presence of quantum confined InAs.

2001 ◽  
Vol 171 (12) ◽  
pp. 1365
Author(s):  
E.E. Vdovin ◽  
Yu.N. Khanin ◽  
Yu.V. Dubrovskii ◽  
A. Veretennikov ◽  
A. Levin ◽  
...  

2016 ◽  
Vol E99.C (3) ◽  
pp. 381-384 ◽  
Author(s):  
Takuma YASUDA ◽  
Nobuhiko OZAKI ◽  
Hiroshi SHIBATA ◽  
Shunsuke OHKOUCHI ◽  
Naoki IKEDA ◽  
...  

1994 ◽  
Vol 49 (19) ◽  
pp. 13704-13711 ◽  
Author(s):  
E. Roca ◽  
C. Trallero-Giner ◽  
M. Cardona

Author(s):  
Takaaki Mano ◽  
Akihiro Ohtake ◽  
Neul Ha ◽  
Takeshi Noda ◽  
Yoshiki Sakuma ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Paul Schmitt ◽  
Vivek Beladiya ◽  
Nadja Felde ◽  
Pallabi Paul ◽  
Felix Otto ◽  
...  

Ultra-thin metallic films are widely applied in optics and microelectronics. However, their properties differ significantly from the bulk material and depend on the substrate material. The nucleation, film growth, and layer properties of atomic layer deposited (ALD) iridium thin films are evaluated on silicon wafers, BK7, fused silica, SiO2, TiO2, Ta2O5, Al2O3, HfO2, Ru, Cr, Mo, and graphite to understand the influence of various substrate materials. This comprehensive study was carried out using scanning electron and atomic force microscopy, X-ray reflectivity and diffraction, four-point probe resistivity and contact angle measurements, tape tests, and Auger electron spectroscopy. Within few ALD cycles, iridium islands occur on all substrates. Nevertheless, their size, shape, and distribution depend on the substrate. Ultra-thin (almost) closed Ir layers grow on a Ta2O5 seed layer after 100 cycles corresponding to about 5 nm film thickness. In contrast, the growth on Al2O3 and HfO2 is strongly inhibited. The iridium growth on silicon wafers is overall linear. On BK7, fused silica, SiO2, TiO2, Ta2O5, Ru, Cr, and graphite, three different growth regimes are distinguishable. The surface free energy of the substrates correlates with their iridium nucleation delay. Our work, therefore, demonstrates that substrates can significantly tailor the properties of ultra-thin films.


2007 ◽  
Author(s):  
M. Kujiraoka ◽  
J. Ishi-Hayase ◽  
K. Akahane ◽  
N. Yamamoto ◽  
K. Ema ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document