Characterization of Thermal Oxides of Laser Annealed Polysilicon

1981 ◽  
Vol 4 ◽  
Author(s):  
Rajiv R. Shah ◽  
Robert Mays ◽  
D. Lloyd Crosthwait

ABSTRACTWe report an investigation of the effects of laser processing on the thermal oxides of polysilicon. LPCVD polysilicon, 500 nm thick, deposited on 500 nm thermal oxide of single crystal silicon was laser processed at various stages in the process sequence for device fabrication. Effects of CW Ar+ and pulsed 1.06 and 0.53 μm laser processing were investigated. Laser annealed polysilicon was oxidized in a steam ambient. Using a second level of polysilicon, guard ring diode and capacitors were fabricated. Electrical characterization revealed an improvement in breakdown field strengths of these oxides without deleterious effects on any of the associated interfaces.

Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


2021 ◽  
Author(s):  
Lianmin Yin ◽  
Yifan Dai ◽  
Hao Hu

Abstract In order to obtain ultra-smooth surfaces of single-crystal silicon in ultra-precision machining, an accurate study of the deformation mechanism, mechanical properties, and the effect of oxide film under load is required. The mechanical properties of single-crystal silicon and the phase transition after nanoindentation experiments are investigated by nanoindentation and Raman spectroscopy, respectively. It is found that pop-in events appear in the theoretical elastic domain of single-crystal silicon due to the presence of oxide films, which directly leads the single crystal silicon from the elastic deformation zone into the plastic deformation zone. In addition, the mechanical properties of single-crystal silicon are more accurately measured after it has entered the full plastic deformation.


1998 ◽  
Vol 64 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Kazuo Sato ◽  
Mitsuhiro Shikida ◽  
Yoshihiro Matsushima ◽  
Takashi Yamashiro ◽  
Kazuo Asaumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document