Structural Control of Epitaxially Grown Sputtered Perovskite Thin Films

1995 ◽  
Vol 401 ◽  
Author(s):  
Kiyotaka Wasa ◽  
Toshifumi Sato ◽  
Hideaki Adachi ◽  
Kentaro Setsune ◽  
S. Trolier-McKinstry ◽  
...  

AbstractThin films of perovskite Pb–Ti–O3 families were heteroepitaxially grown by sputtering on (0001)sapphire and/or (001)SrTiO (ST). These epitaxial films contained microstructures, although X–ray diffraction analysis suggested formation of single crystal phase with three dimentional crystal orientation. Their microstructures were studied by the electron microscopy, atomic force microscopy, and spectroscopic ellipsometry so as to find factors which influence the formation of the microstructure. It was found that the orientation of the substrate surface and the chemical composition of adatoms during initial film growth strongly affected the formation of the microstructures. Sputtered PbTiO3 (PT) thin films under a stoichiometric condition on a miscut(001) ST(miscut 1.7 degree) realized the growth of continuous single crystal thin films of 10–100nm thick with extremely smooth surface with surface roughness less than 3nm. Deposition on a miscut substrate under a stoichiometric condition is essential to make continuous thin films of perovskite of single crystal phase.

2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2085
Author(s):  
Yogesh Sharma ◽  
Elizabeth Skoropata ◽  
Binod Paudel ◽  
Kyeong Tae Kang ◽  
Dmitry Yarotski ◽  
...  

We report on the growth of stoichiometric, single-crystal YCrO3 epitaxial thin films on (001) SrTiO3 substrates using pulsed laser deposition. X-ray diffraction and atomic force microscopy reveal that the films grew in a layer-by-layer fashion with excellent crystallinity and atomically smooth surfaces. Magnetization measurements demonstrate that the material is ferromagnetic below 144 K. The temperature dependence of dielectric permittivity shows a characteristic relaxor-ferroelectric behavior at TC = 375–408 K. A dielectric anomaly at the magnetic transition temperature indicates a close correlation between magnetic and electric order parameters in these multiferroic YCrO3 films. These findings provide guidance to synthesize rare-earth, chromite-based multifunctional heterostructures and build a foundation for future studies on the understanding of magnetoelectric effects in similar material systems.


2001 ◽  
Vol 688 ◽  
Author(s):  
N.J. Donnelly ◽  
G. Catalan ◽  
C. Morros ◽  
R.M. Bowman ◽  
J.M. Gregg

AbstractThin film capacitor structures of Au / (1−x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 /(La1/2Sr1/2)CoO3 were fabricated by pulsed laser deposition on single crystal {001} MgO substrates. Films were found to be perovskite dominated and highly {001} oriented. Dielectrically, films displayed relaxorlike features, though maximum permittivity was low compared to single crystal or bulk ceramic (∼1400 at peak @1kHz, for x=0.07, 0.1 & 0.2). A field induced piezoelectric coefficient d33 was measured by piezoresponse atomic force microscopy for specific compositions x =0, × =0.07, and x =0.1 and found to be disappointingly low - indicating poor electric field induced strain. Despite this macroscopic electrostrictive coefficients Q33 were found to be (3.6 ± 0.6) ×10−2C−2m4, (2.6 ± 0.2) ×10−2C−2m4, and (0.9 ± 0.3) ×10−2C−2m4 respectively. Crystallographic electrostrictive coefficients were determined by in-situ x-ray diffraction and found to be (4.9 ± 0.2) ×10−2C−2m4 for PMN-(0.07)PT and (1.9 ± 0.1) ×10−2C−2m4 for PMN-(0.1)PT. Considering that all these Q33 values are of the same order of magnitude as found in single crystal experiments (2.5 – 3.8 ×10−2C−2m4), it is suggested that low out-of-plane strain is entirely a result of reduced polarisability rather than reduced electrostrictive coefficients in thin films relative to bulk ceramic or single crystal. An estimate was also made of the Q13 electrostrictive coefficient for PMN and PMN-(0.07)PT by measuring permittivity as a function of applied in-plane strain. The values obtained were -1.31 ×10−2C−2m4 and -0.46 ×10−2C−2m4 respectively.


2010 ◽  
Vol 10 (1) ◽  
pp. 8-11 ◽  
Author(s):  
Anuar Kassim ◽  
Tan WeeTee ◽  
Dzulkefly Kuang Abdullah ◽  
Atan Mohd. Sharif ◽  
Ho SoonMin ◽  
...  

FeS2 thin films have been deposited by using low cost chemical bath deposition technique. The films obtained under deposition parameters such as bath temperature (90 °C), deposition period (90 min), electrolyte concentration (0.15 M) and pH of the reactive mixture (pH 2.5). The thin films were characterized using X-ray diffraction and atomic force microscopy in order to study the structural and morphological properties. The band gap energy, transition type and absorption properties were determined using UV-Vis Spectrophotometer. X-ray diffraction displayed a pattern consistent with the formation of an orthorhombic structure, with a strong (110) preferred orientation. Atomic force microscopy image showed the substrate surface is well covered with irregular grains. A direct band gap of 1.85 eV was obtained according to optical absorption studies.   Keywords: Iron sulfide, X-ray diffraction, chemical bath deposition, thin films


1995 ◽  
Vol 10 (10) ◽  
pp. 2564-2572 ◽  
Author(s):  
Keiichi Nashimoto ◽  
Michael J. Cima ◽  
Paul C. McIntyre ◽  
Wendell E. Rhine

Film growth and microstructural evolution were investigated for sol-gel derived LiNbO3 thin films deposited on lattice-matched single-crystal substrates. Epitaxial LiNbO3 films of about 100 nm nominal thickness were prepared by spin coating a solution of the lithium niobium ethoxide on sapphire (0001) substrates and annealing at 400 °C or 700 °C in a humidified oxygen atmosphere. These films exhibited an epitaxial relationship with the substrate of the type LiNbO3 (0001) || α-Al2O3 (0001) and LiNbO3 [100] || α-Al2O3 [100] as determined by x-ray pole figure analysis. Transmission electron microscopy indicated the epitaxial films annealed at 400 °C consisted of slightly misoriented ∼5 nm subgrains and of numerous ∼10 nm enclosed pores. The microstructure and orientation development of these films was consistent with a heteroepitaxial nucleation and growth mechanism, in which epitaxial nuclei form at the substrate surface and grow upward into an amorphous and porous intermediate film: Epitaxial films annealed at 700 °C contained larger 150-200 nm subgrains and pinholes. Misorientations between adjacent subgrains appeared to be significantly smaller in films annealed at 700 °C than those in films annealed at 400 °C. Hydrolysis of the alkoxide precursor solution prior to spin coating promoted the development of polycrystalline films on single-crystal sapphire substrates. Infrared spectra and thermal analysis indicated that, independent of the degree of the solution hydrolysis, nucleation of LiNbO3 was immediately preceded by decomposition of an amorphous carbonate intermediate phase.


2009 ◽  
Vol 1222 ◽  
Author(s):  
Hom R Kandel ◽  
Tar-Pin Chen ◽  
Hye-Won Seo ◽  
Milko Iliev ◽  
Paritosh Wadekar ◽  
...  

AbstractWe have fabricated highly resistive materials PrBa2 (Cu1-xMx) 3O7 (M=Al, Ga, x = 0.20) by doping metals Ga and Al on PrBa2Cu3O7(PBCO). X-ray data indicated no significant second phases in substituting Cu by Al or Ga up to 20%.The electrical resistivity of these materials were three to four orders in magnitude higher than PBCO at 200K, which may give an effective potential barrier to YBCO in high Tc S-I-S Josephson junction. Epitaxial thin films of these materials were grown using KrF excimer laser on LAO (110) single crystal substrates. X-ray diffraction (XRD) and atomic force microscopy (AFM) were deployed to study the crystal orientation, epitaxy and roughness of the single crystal thin films. Micro Raman spectroscopy was carried out to investigate the dopant site in PBCO.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


2002 ◽  
Vol 09 (05n06) ◽  
pp. 1611-1615 ◽  
Author(s):  
G. CAMPILLO ◽  
L. F. CASTRO ◽  
P. VIVAS ◽  
E. BACA ◽  
P. PRIETO ◽  
...  

La 0.67 Ca 0.33 MnO 3 - δ thin films were deposited using a high-pressure dc-sputtering process. Pure oxygen at a pressure of 3.8 mbar was used as sputtering gas. The films were grown on (001) LaAlO 3 and (001) SrTiO 3 substrates at heater temperature of 850° without any annealing treatment. The formation of highly a-axis-oriented films with sharp interface with substrate surface is demonstrated by X-ray diffraction, transmission electron microscope (TEM), and atomic force microscope (AFM) analysis. Electrical characterization revealed a metal–insulator transition at T MI = 276 K, and magnetic characterization showed good magnetic properties with a PM–FM transition at TC ≈ 262 K.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document