DIRECT GROWTH OF EPITAXIAL La0.67Ca0.33MnO3 - δ THIN FILMS

2002 ◽  
Vol 09 (05n06) ◽  
pp. 1611-1615 ◽  
Author(s):  
G. CAMPILLO ◽  
L. F. CASTRO ◽  
P. VIVAS ◽  
E. BACA ◽  
P. PRIETO ◽  
...  

La 0.67 Ca 0.33 MnO 3 - δ thin films were deposited using a high-pressure dc-sputtering process. Pure oxygen at a pressure of 3.8 mbar was used as sputtering gas. The films were grown on (001) LaAlO 3 and (001) SrTiO 3 substrates at heater temperature of 850° without any annealing treatment. The formation of highly a-axis-oriented films with sharp interface with substrate surface is demonstrated by X-ray diffraction, transmission electron microscope (TEM), and atomic force microscope (AFM) analysis. Electrical characterization revealed a metal–insulator transition at T MI = 276 K, and magnetic characterization showed good magnetic properties with a PM–FM transition at TC ≈ 262 K.

1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2001 ◽  
Vol 665 ◽  
Author(s):  
Andrei Yu. Andreev ◽  
Helmut Sitter ◽  
Christoph J. Brabec ◽  
Peter Hinterdorfer ◽  
Günter Springholz ◽  
...  

ABSTRACTWe have studied the structure and growth regularities of highly ordered para-sexiphenyl (C36H26) thin films deposited by Hot Wall Epitaxy on mica. In particular, atomic force microscopy (AFM) was used to investigate the early growth stage of these films, in order to find the process controlling parameters. It was shown that the substrate temperature and the growth time are important parameters for control of the film morphology, in terms of the degree of anisotropy and long range order. X-ray diffraction pole figure technique and transmission electron microscopy were also used to characterize the crystallographic structure of the thicker films. We have shown that the highly ordered crystallites of para-sexiphenyl (showing needle-like morphology by AFM) are oriented with their (11 1 ) or (11 2 ) crystallographic planes parallel to the substrate surface. For each of these two orientations there are two opposite directions for growth of crystallites reflecting the two-fold symmetry of the mica surface.


2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


2004 ◽  
Vol 19 (8) ◽  
pp. 2315-2321 ◽  
Author(s):  
Thang Nguyen ◽  
Walter Varhue ◽  
Edward Adams ◽  
Mark Lavoie ◽  
Stephen Mongeon

The heteroepitaxial growth of GaSb thin films on Si(100) and GaAs(100) substrates is presented. The growth technique involves the use of atomic Ga and Sb species, which are provided by thermal effusion and radio frequency sputtering, respectively. The crystalline quality of the heteroepitaxial GaSb film on the Si substrate is high despite the larger lattice mismatch. Epitaxial quality is determined by high-resolution x-ray diffraction and Rutherford backscatter spectrometry channeling. Atomic-force microscopy is used to monitor the evolution of surface morphology with increasing film thickness. Transmission electron microscopy shows the formation of stacking faults at the Si/GaSb interface and their eventual annihilation with increasing GaSb film thickness. Annihilation of stacking faults occurs when two next-neighbor mounds meet during the overgrowth of a common adjacent mound.


1997 ◽  
Vol 467 ◽  
Author(s):  
G. Viera ◽  
P. Roca i Cabarrocas ◽  
S. Hamma ◽  
S. N. Sharma ◽  
J. Costa ◽  
...  

ABSTRACTNanostructured silicon thin films have been deposited by plasma enhanced chemical vapor deposition at low substrate temperature (100 °C) in the presence of silicon nanoparticles. The nanostructure of the films was revealed by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, which showed ordered silicon domains (1–2 nm) embedded in an amorphous silicon matrix. These ordered domains are due to the particles created in the discharge that contribute to the film growth. One consequence of the incorporation of nanoparticles is the accelerated crystallization of the nanostructured silicon thin films when compared to standard a-Si:H, as shown by the electrical characterization during the annealing.


2003 ◽  
Vol 806 ◽  
Author(s):  
Senthil N Sambandam ◽  
Shekhar Bhansali ◽  
Venkat R. Bhethanabotla

ABSTRACTMicrostructures of multi-component amorphous metallic glass alloys are becoming increasingly important due to their excellent mechanical properties and low coefficient of friction. In this work, thin films of Zr-Ti-Cu-Ni-Be have been deposited by DC magnetron sputtering in view of exploring their potential technological applications in fields such as Micro Electro Mechanical Systems (MEMS). Their structure, composition, surface morphology, mechanical properties viz., hardness and Young's modulus were analyzed using X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nanoindentation. Influence of the deposition parameters of sputtering pressure and power upon the composition and surface morphology of these films has been evidenced by SEM, and AFM analysis, showing that such a process yields very smooth films with target composition at low sputtering pressures. These studies are useful in understanding the multicomponent sputtering process.


2007 ◽  
Vol 14 (04) ◽  
pp. 755-759 ◽  
Author(s):  
D. U. LEE ◽  
J. H. JUNG ◽  
T. W. KIM ◽  
H. S. LEE ◽  
H. L. PARK ◽  
...  

CdTe thin films were grown on GaAs (100) substrates by using molecular beam epitaxy at various temperatures. The results of the X-ray diffraction (XRD) patterns showed that the orientation of the grown CdTe thin films was the (100) orientation. XRD patterns, atomic force microscopy images, high-resolution transmission electron microscopy (HRTEM) images, and photoluminescence spectra showed that the crystallinity of CdTe (100) epilayers grown on GaAs (100) substrates was improved by increasing the substrate temperature. HRTEM images showed that misfit dislocations existed at the CdTe / GaAs heterointerface. These results can help improve understanding of the substrate temperature effect on the structural and the optical properties of CdTe (100)/ GaAs (100) heterostructures.


1995 ◽  
Vol 10 (3) ◽  
pp. 680-691 ◽  
Author(s):  
Andreas Seifert ◽  
Fred F. Lange ◽  
James S. Speck

A mixed alkoxide liquid precursor was used to form epitaxial PbTiO3 thin films by spin-coating on cubic (001) SrTiO3 substrates. The films were heat-treated at temperatures between 380 °C/1 h and 800 °C/1 h. X-ray diffraction, atomic force microscopy, scanning and transmission electron microscopy were used to characterize the microstructure of the films and to evaluate the epitaxial phenomena. At ∼400 °C/1 h, a polycrystalline, metastable Pb-Ti fluorite crystallizes from the pyrolyzed amorphous precursor. At slightly higher temperatures (∼420 °C/1 h), the thermodynamically stable phase with the perovskite structure epitaxially nucleates at the film/substrate interface. A small number of epitaxial grains grow through the film toward the surface and consume the nanocrystalline fluorite grains. Coarsening of the perovskite grains leads to a reduction in mosaic spread during further heating. Pores, which concurrently coarsen with grain growth, produce a pitted surface as they disappear from within the film. At 800 °C/1 ha dense epitaxial PbTiO3 film with a smooth surface is observed. Parameters governing the formation of a- and c-domains are discussed as well as the small tilts of the domain axes away from the substrate normal.


2013 ◽  
Vol 24 ◽  
pp. 133-139 ◽  
Author(s):  
Madhavi Thakurdesai ◽  
A. Mahadkar ◽  
Varsha Bhattacharyya

Ion beam irradiation is a unique non-equilibrium technique for phase formation and material modification. Localized rise in temperature and ultra fast (~1012 s) dissipations of impinging energy make it an attractive tool for nanostructure synthesize. Dense electronic excitation induced spatial and temporal confinement of high energy in a narrow dimension leads the system to a highly non-equilibrium state and the system then relaxes dynamically inducing nucleation of nanocrystals along the latent track. In the present investigation, amorphous thin films of TiO2 are irradiated by 100 MeV Ag ion beam. These irradiated thin films are characterized by Atomic Force Microscopy (AFM), Glancing Angle X-ray Diffraction (GAXRD), Transmission Electron Microscopy (TEM) and UV-VIS absorption spectroscopy. AFM and TEM studies indicate formation of circular nanoparticles of size 10±2 nm in a film irradiated at a fluence of 1×1012 ions.cm-2. Nanophase formation is also inferred from the blueshift observed in UV-VIS absorption band edge.


Sign in / Sign up

Export Citation Format

Share Document