A High Performance UV Photodetector from Thin Film Diamond

1995 ◽  
Vol 416 ◽  
Author(s):  
Robert D. Mckeag ◽  
Michael D. Whitfield ◽  
Simon Sm Chan ◽  
Lisa Ys Pang ◽  
Richard B. Jackman

ABSTRACTThin film diamond has been used to fabricate a photodetector which displays high sensitivity to deep UV light, with an external quantum efficiency of greater than one, a dark current of less than 0.1nA and which is near ‘blind’ to visible light.

2021 ◽  
Author(s):  
Dechao Guo ◽  
Liqing Yang ◽  
Jingcheng Zhao ◽  
Ji Li ◽  
Guo He ◽  
...  

The visible-blind ultraviolet (UV) photodetector can detect UV signals and is not interfered by visible light or infrared light in the environment. In order to realize high-performance visible-blind UV organic...


2018 ◽  
Vol 6 (2) ◽  
pp. 299-303 ◽  
Author(s):  
Ranran Zhuo ◽  
Yuange Wang ◽  
Di Wu ◽  
Zhenhua Lou ◽  
Zhifeng Shi ◽  
...  

Self-powered MoS2/GaN p–n heterojunction photodetectors exhibited high sensitivity to deep-UV light with high responsivity, specific detectivity and fast response speeds.


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


2015 ◽  
Vol 3 (31) ◽  
pp. 8074-8079 ◽  
Author(s):  
Changyong Lan ◽  
Chun Li ◽  
Yi Yin ◽  
Huayang Guo ◽  
Shuai Wang

Single-crystalline GeS nanoribbons were synthesized by chemical vapor deposition for the first time. The nanoribbon photodetectors respond to the entire visible incident light with a response edge at around 750 nm and a high responsivity, indicating their promising application for high performance broadband visible-light photo-detection.


2019 ◽  
Vol 36 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Chee Yong Fong ◽  
Sha Shiong Ng ◽  
NurFahana Mohd Amin ◽  
Fong Kwong Yam ◽  
Zainuriah Hassan

Purpose This study aims to explore the applicability of the sol-gel-derived GaN thin films for UV photodetection. Design/methodology/approach GaN-based ultraviolet (UV) photodetector with Pt Schottky contacts was fabricated and its applicability was investigated. The current-voltage (I-V) characteristics of the GaN-based UV photodetector under the dark current and photocurrent were measured. Findings The ideality factors of GaN-based UV photodetector under dark current and photocurrent were 6.93 and 5.62, respectively. While the Schottky barrier heights (SBH) for GaN-based UV photodetector under dark current and photocurrent were 0.35 eV and 0.34 eV, respectively. The contrast ratio and responsivity of this UV photodetector measured at 5 V were found to be 1.36 and 1.68 μA/W, respectively. The photoresponse as a function of time was measured by switching the UV light on and off continuously at different forward biases of 1, 3 and 6 V. The results showed that the fabricated UV photodetector has reasonable stability and repeatability. Originality/value This work demonstrated that GaN-based UV photodetector can be fabricated by using the GaN thin film grown by low-cost and simple sol-gel spin coating method.


2019 ◽  
Author(s):  
Baiquan Liu ◽  
Yemliha Altintas ◽  
Lin Wang ◽  
Sushant Shendre ◽  
Manoj Sharma ◽  
...  

<p> Colloidal quantum wells (CQWs) are regarded as a new, highly promising class of optoelectronic materials thanks to their unique excitonic characteristics of high extinction coefficient and ultranarrow emission bandwidth. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind compared with other types of LEDs (e.g., organic LEDs, colloidal quantum-dot LEDs, and perovskite LEDs). Herein, for the first time, the authors show high-efficiency CQW-LEDs reaching close to the theoretical limit. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition- and device- engineering, the CQW-LEDs using CdSe/Cd<sub>0.25</sub>Zn<sub>0.75</sub>S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23,490 cd m<sup>-2</sup>, extremely saturated red color with the Commission Internationale de L’Eclairage coordinates of (0.715, 0.283) and stable emission are obtained. The findings indicate that HIS grown CQWs enable high-performance solution-processed LEDs, which may pave the path for CQW-based display and lighting technologies.</p>


Sign in / Sign up

Export Citation Format

Share Document