Correlation Between the Standard Deviation of Sheet Resistance and the Temperature of Rapid Thermal Annealing

1996 ◽  
Vol 429 ◽  
Author(s):  
X. W. Lin ◽  
D. Pramanik

AbstractRapid thermal annealing (RTA) induced reactions between Ti thin films and Si wafers were characterized by sheet resistance measurements. It was found that the standard deviation a of the measurements is RTA-temperature dependent, and strongly correlates with the mean sheet resistance R. A specific temperature was identified, corresponding to a sharp σ peak in the temperature regime associated with the C49-C54 TiSi2 phase transition. This temperature is characteristic of materials parameters such as Ti thickness and substrate doping species, and can be used to accurately monitor or compare the calibration of RTA systems.

2003 ◽  
Vol 27 (11) ◽  
pp. 1083-1086 ◽  
Author(s):  
H. Ito ◽  
T. Kusunoki ◽  
H. Saito ◽  
S. Ishio

2002 ◽  
Vol 716 ◽  
Author(s):  
G.Z. Pan ◽  
E.W. Chang ◽  
Y. Rahmat-Samii

AbstractWe comparatively studied the formation of ultra thin Co silicides, Co2Si, CoSi and CoSi2, with/without a Ti-capped and Ti-mediated layer by using rapid thermal annealing in a N2 ambient. Four-point-probe sheet resistance measurements and plan-view electron diffraction were used to characterize the silicides as well as the epitaxial characteristics of CoSi2 with Si. We found that the formation of the Co silicides and their existing duration are strongly influenced by the presence of a Ti-capped and Ti-mediated layer. A Ti-capped layer promotes significantly CoSi formation but suppresses Co2Si, and delays CoSi2, which advantageously increases the silicidation-processing window. A Ti-mediated layer acting as a diffusion barrier to the supply of Co suppresses the formation of both Co2Si and CoSi but energetically favors directly forming CoSi2. Plan-view electron diffraction studies indicated that both a Ti-capped and Ti-mediated layer could be used to form ultra thin epitaxial CoSi2 silicide.


2020 ◽  
Vol 59 (10) ◽  
pp. 105503
Author(s):  
Wafaa Magdy ◽  
Ayaka Kanai ◽  
F. A. Mahmoud ◽  
E. T. El Shenawy ◽  
S. A. Khairy ◽  
...  

1996 ◽  
Vol 35 (Part 1, No. 8) ◽  
pp. 4220-4224 ◽  
Author(s):  
M. D. Kim ◽  
T. W. Kang ◽  
M. S. Han ◽  
T. W. Kim

1995 ◽  
Vol 387 ◽  
Author(s):  
M. J. O'Keefe ◽  
C. L. Cerny

AbstractPhysical vapor deposition of Group VI elements (Cr, Mo, W) can lead to the formation of a metastable A-15 crystal structure under certain processing conditions. Typically, a thermally induced transformation of the metastable A-15 structure into the equilibrium body centered cubic structure has been accomplished by conventional furnace annealing at T/Tm ≈ 0.3 from tens of minutes to several hours. In this study we report on the use of rapid thermal annealing to transform sputter deposited A- 15 crystal structure tungsten and chromium thin films into body centered cubic films within the same temperature range but at times on the order of one minute. The minimum annealing times and temperatures required for complete transformation of the A-15 phase into the BCC phase varied from sample to sample, indicating that the transformation was dependent on the film characteristics. The electrical resistivity of A-15 Cr and W films was measured before and after rapid thermal annealing and was found to significantly decrease after transformation into the body center cubic phase.


2007 ◽  
Vol 14 (01) ◽  
pp. 141-145
Author(s):  
Q. Y. ZHANG ◽  
S. W. JIANG ◽  
Y. R. LI

The rapid thermal annealing (RTA) process was adapted to crystallize the amorphous ( Ba,Sr ) TiO 3 thin films prepared on Si (111) substrates by RF magnetic sputtering deposition. The effect of annealing temperature, heating rate and duration time on crystallization was studied through X-ray diffraction and atomic force microscopy. The result shows that the crystallinity and grain size were strongly dependent on the temperature, heating rate, and duration time. Higher heating rate leads to smaller grain size. In high heating rate, the grain size shows different dependence of temperature from that of low heating rate. For a heating rate of 50°C/s, the grain size decreased with temperature increasing below 700°C, while after that temperature, the grain size increased slightly with the temperature increasing. At a certain temperature, the crystallinity and surface roughness improved with increase in annealing time, while grain size changed little. The effect of rapid heating rate on the nucleation and grain growth has been discussed, which contributes to the limited grain size of the annealed ( Ba,Sr ) TiO 3 thin films.


1990 ◽  
Vol 164-165 ◽  
pp. 359-365 ◽  
Author(s):  
J. Baixeras ◽  
F. Carrie ◽  
F.Hosseini Teherani ◽  
A. Kreisler

2011 ◽  
Vol 1321 ◽  
Author(s):  
A. Kumar ◽  
P.I. Widenborg ◽  
H. Hidayat ◽  
Qiu Zixuan ◽  
A.G. Aberle

ABSTRACTThe effect of the rapid thermal annealing (RTA) and hydrogenation step on the electronic properties of the n+ and p+ solid phase crystallized (SPC) poly-crystalline silicon (poly-Si) thin films was investigated using Hall effect measurements and four-point-probe measurements. Both the RTA and hydrogenation step were found to affect the electronic properties of doped poly-Si thin films. The RTA step was found to have the largest impact on the dopant activation and majority carrier mobility of the p+ SPC poly-Si thin films. A very high Hall mobility of 71 cm2/Vs for n+ poly-Si and 35 cm2/Vs for p+ poly-Si at the carrier concentration of 2×1019 cm-3 and 4.5×1019 cm-3, respectively, were obtained.


Sign in / Sign up

Export Citation Format

Share Document