Surface Modification of Polymer by Ion Assisted Reaction in Reactive Gases Environment

1996 ◽  
Vol 438 ◽  
Author(s):  
S. K. Koh ◽  
S. C. Choi ◽  
W. K. Choi ◽  
H. J. Jung ◽  
H. H. Hu

AbstractWettable surface of polymers (advanced wetting angle ∼10° and surface energy ∼ 60 ∼ 70 erg/cm2) have been accomplished by the ion assisted reaction, in which energetic ions are irradiated on polymer with blowing oxygen gas. The energies of ions are varied from 0.5 to 1.5 keV, doses 1014 to 1017 ions/cm2, and blowing rate of oxygen 0 ∼ 8 ml/min. The wetting angles are increased when the wettable polymers were exposed in air, but are remained in pure water. Improvement of surface energy is mainly due to the polar force. Surface analysis shows hydrophilic functional groups such as C=O, (C=O)-O, C-O, etc., are formed without surface damage after the ion assisted reaction treatment. Comparisons between the conventional surface treatments and the ion assisted reaction are described in term of physical bombardment, surface damage, functional group, and chain mobility in polymer.

1997 ◽  
Vol 504 ◽  
Author(s):  
S. K. Koh ◽  
S. C. Choi ◽  
S. Han. ◽  
H-J Jung

AbstracrIon assisted reaction (IAR), which was firstly presented in 1995 MRS Fall meeting, has been reviewed for the surface modifications of polymer and ceramics. The reaction is assisted by energetic ions from 0.5 to 1.5 keV, doses 1014 to 1017 ions/cm2, and blowing rate of oxygen 0 ∼ 8 ml/min. Hydrophilic surfaces of polymers (wetting angle < 20° and surface energy 60 ∼ 70 erg/cm2) have been accomplished by the reaction, and an improvement of wettability and an increment of the surface energy are mainly due to the polar force and hydrophilic functional groups such as C=O, (C=O)-O, C-O, etc., without surface damage. The IAR was also applied on aluminum nitride in an O2 environment and AMON on AIN is formed by the Ar+ irradiation. The improvement of bond strength of Cu films on the AIN surface resulted from the interface bonds between Cu and the surface layers. Comparisons between the conventional surface treatments and the IAR are described in terms of physical bombardment, surface damage, functional group, and chain mobility in polymer.


2009 ◽  
Vol 81 (9) ◽  
pp. 1615-1634 ◽  
Author(s):  
José M. G. Martinho ◽  
Telmo J. V. Prazeres ◽  
Leila Moura ◽  
José P. S. Farinha

The fluorescence of a rhodamine X dye covalently linked to the 5' terminus of a 25-mers thymine oligodeoxynucleotide (dT25-ROX), adsorbed on the shell of thermoresponsive core-shell polymer particles, was used to probe the polarity, mobility, and distribution of the oligodeoxynucleotides (ODNs) in the shell. The particles have a glassy core of poly(methyl methacrylate) (PMMA) with a 67-nm radius, and a thermoresponsive shell of poly(N-isopropyl acrylamide) (PNIPAM) whose thickness changes from 42 nm at 11 ºC to 5 nm at 45 ºC. The variation in polarity of the shell with temperature was obtained both from the lifetimes and from the solvatochromic shifts of the dye and shows a sharp transition at the volume phase transition temperature (TVPT) of the PNIPAM shell. Förster resonance energy transfer (FRET) between dT25-ROX and a malachite green (MG)-labeled ODN (dT25-MG) was used to obtain the distribution of the ODNs in the thermoresponsive shell. Our results show that at 23 ºC (below TVPT) the ODNs are distributed inside the shell, sensing an environment similar to water. At this temperature, the PNIPAM shell is composed of hydrated chains with high mobility, as probed by the fluorescence anisotropy of dT25-ROX. By increasing the temperature above TVPT, the shell collapses and the chain mobility drastically slows down owing to the anchoring of the ODN to the dense shell of PNIPAM. Furthermore, FRET shows that the ODNs are absorbed on the 5-nm-thick collapsed shell but extend into the water. The polarity probed by the ROX averages the dyes distributed in the interior of the particle shell and in water, with 60 % of the dyes outside the particle shell (i.e., sensing pure water). Another indication that above the TVPT most of the ODNs are oriented with the dye toward the water phase is that the mobility of the dye covalently bound to the ODNs is identical in water and in the collapsed particle shell. The hybridization efficiency between an ODN supported in the particle shell (by adsorbing the ODN below TVPT and subsequently increasing the temperature above TVPT) and the complementary ODN in solution is identical to that of hybridization in water. This result opens good perspectives toward the use of the core-shell thermoresponsive nanoparticles as supports in DNA bioassays.


RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 15964-15970 ◽  
Author(s):  
Paola Calcagnile ◽  
Tommaso Dattoma ◽  
Elisa Scarpa ◽  
Antonio Qualtieri ◽  
Laura Blasi ◽  
...  

Parylene C-based 2D STC fluidics, where pure water and water-based solutions can flow strictly confined by differences in surface energy.


2001 ◽  
Vol 672 ◽  
Author(s):  
Nilson C. Cruz ◽  
Elidiane C. Rangel ◽  
Giovana Z. Gadioli ◽  
Rogério P. Mota ◽  
Roberto Y. Honda ◽  
...  

ABSTRACTThe response of a biological environment when in contact with an artificial material is primarily determined by the material surface properties such as composition, contact angle and free surface energy [1,2]. Owing to that, different treatments have been employed to improve the performance of biocompatible materials. In this sense, plasma-based techniques are very attractive because they enable the surface processing of materials with virtually any geometry preserving bulk properties. Furthermore, other characteristics make plasma treatment of particular interest in biomaterial processing. Those characteristics include, for instance, a) the possibility of using a large number of different chemicals to introduce any desired functional group on the surface, b) the treatment is performed in an intrinsically sterile environment and, c) different kind of materials (such as ceramics, metals and polymers) including those chemically inert can be treated.


1994 ◽  
Vol 354 ◽  
Author(s):  
Seok-Keun Koh ◽  
Won-Kook Choi ◽  
Jun-Sik Cho ◽  
Seok-Kyun Song ◽  
Hyung-Jin Jung

AbstractIon irradiation has been carried out to improve wettability of PMMA to water. The polymer was irradiated by argon and oxygen ions, and amount of ions was changed from 1014 ArVcm2 to 5xl016Ar+/cm2. Ions energies were varied from 0.5 keV to 1.5 keV, and oxygen gas was flowed from 0 seem to 6 scan near the polymer surface during ion irradiation. Wetting angle was reduced from 68 degree to 49 degree with increasing Ar+ ion irradiation, to 43 degree with Ch+ ion irradiation, and dropped to 8 degree with Ar+ ion irradiation with flowing 4 seem oxygen gas near the polymer surface. Recovery of wettability in dry air condition, and maintenance of it in dilute HC1 solution were explained in a view of formation of hydrophilic groups due to a reaction between irradiated polymer chain by energetic ion irradiation and flowing oxygen near the surface. Reactions among polymer matrix, energetic ions and oxygen gas to form hydrophilic group by energetic ions were discussed in terms of a two-step reaction, in which the first step is the creation of an unstable polymer chain by the ion irradiation and the second step is a reaction between the radicals and the oxygen gas.


1981 ◽  
Vol 36 (11-12) ◽  
pp. 1062-1067 ◽  
Author(s):  
Fumio Yoshii ◽  
Isao Kaetsu ◽  
Akio Yamada

Abstract The immobilization of erythrocyte as the whole cell without hemolysis was studied. It found that erythrocyte could be treated and immobilized stably by radiation polymerization of specific monomers having high viscous and long oxyethylene units chain such as methoxypolyethylene-glycol methacrylate (M-23G) and polyethyleneglycol dimethacrylate (14G). Irradiation dose without hemolysis was limited less than 1 × 105 r and a comonomer system consisting of M -23G-14G, 1:1 and small quantity of glutaraldehyde (GA) was the optimum carrier composition. The functional properties of the immobilized erythrocyte was also investigated. It was found that the immobilized cell could be carried out carbon monoxide-oxygen gas exchange effectively and reversibly so as in the intact cell. The immobilized erythrocyte also showed the catalase activity just as in the intact cell. The stability of erythrocyte increased greatly by the immobilization for standing at low and room temperatures and hardly hemolyzed in non-isotonic medium such as pure water. It was observed in scanning electron microscope that the immobilized erythrocyte had a hollow disk shape same as in intact cell and covered with a thin polymer layer.


2021 ◽  
Vol 68 (4) ◽  
pp. 849-860
Author(s):  
Przemysław Pietras ◽  
Hieronim Maciejewski ◽  
Bartłomiej Mazela

In the presented research, two trialkoxysilanes were used to investigate their reactivity with microcrystalline cellulose (MCC) applied as a model material. As a continuation of the previous study, the research aimed at evaluation of the durability and potential reversibility of the silane treatment. Two different solvents and a mixture thereof were used for cellulose modification. The influence of amino group/pH, an excess of silanes and re-soaking with water on binding with cellulose was examined. The results obtained confirm that both selected silanes can effectively modify MCC. However, the treatment with 3-(2-aminoethylamino)propyltrimethoxysilane occurred more effective than with Methyltrimethoxysilane due to the presence of amino groups. Among the three tested solvents, the most effective was pure water. In contrast, the use of ethanol and a mixture of ethanol and water gave significantly worse results. Summarising, the presented research clearly shows how important the type of the functional group in alkoxysilanes is for its chemical reactivity with natural polymers, which is crucial for their application in waterlogged wood conservation.


2021 ◽  
Author(s):  
Alexander Schmitt ◽  
Sanket Samal ◽  
Barry C. Thompson

A family of Poly(3-alkylthiophene) copolymers bearing different functional groups was synthesized via direct arylation polymerization and the functional group impact on surface energy, crystallinity, and electronic properties was investigated.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Daniel Cristea ◽  
Ioana-Laura Velicu ◽  
Luis Cunha ◽  
Nuno Barradas ◽  
Eduardo Alves ◽  
...  

The possibility to tune the elemental composition and structure of binary Me oxynitride-type compounds (Me1Me2ON) could lead to attractive properties for several applications. For this work, tantalum-titanium oxynitride (TaTiON) thin films were deposited by DC reactive magnetron co-sputtering, with a –50 V bias voltage applied to the substrate holder and a constant substrate temperature of 100 °C. To increase or to decrease in a controlled manner, the Ti and Ta content in the co-sputtered films, the Ti and Ta target currents were varied between 0.00 and 1.00 A, in 0.25 A steps, while keeping the sum of the currents applied to the two targets at 1.00 A. The reactive gases flow, consisting of a nitrogen and oxygen gas mixture with a constant N2/O2 ratio (85%/15%), was also kept constant. The single-metal oxynitrides (TaON and TiON) showed a low degree of crystallinity, while all the other co-sputtered films revealed themselves to be essentially amorphous. These two films also exhibited higher adhesion to the metallic substrate. The TaON film showed the highest hardness value (14.8 GPa) and the TiON film a much lower one (8.8 GPa), while the co-sputtered coatings exhibited intermediary values. One of the most interesting findings was the significant increase in the O content when the Ti concentration surpassed the Ta one. This significantly influenced the optical characteristic of the films, but also their electrical properties. The sheet resistivity of the co-sputtered films is strongly dependent on the O/(Ta + Ti) atomic ratio.


1996 ◽  
Vol 11 (11) ◽  
pp. 2933-2939 ◽  
Author(s):  
Seok-Keun Koh ◽  
Won-Kook Choi ◽  
Jun-Sik Cho ◽  
Seok-Kyun Song ◽  
Young-Man Kim ◽  
...  

Ion irradiation with various oxygen flow rates has been carried out to improve the wettability of polymethylmethacrylate (PMMA) to water and to enhance the adhesion between Al and the polymer. Ar+ ion and oxygen ion were irradiated on the polymer, and amounts of ions were changed from 5 × 1014 Ar+/cm2 to 5 × 1016 Ar+/cm2 by a broad ion beam source. Oxygen gas from 0 ml/min to 7 ml/min was flowed near the polymer surface during the ion irradiation, and the energy of ions was changed from 500 eV to 1500 eV. The wetting angle was reduced from 68° to 49° with the Ar+ ion irradiation only at 1 keV energy, to 43° with the oxygen ion irradiation, and dropped to 8° with Ar+ ion irradiation with flowing 4 ml/min oxygen gas near the polymer surface. Changes of wetting angle with oxygen gas and Ar+ ion irradiation were explained by a two-step chemical reaction among polymer matrix, energetic ions, and oxygen gas. The effects of Ar+ ion and oxygen ion irradiation were explained by considering formation of hydrophilic groups due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas, and enhanced adhesion between Al and PMMA was explained by the formation of electron acceptor groups in polymer and electron donors in metal, and by the chemical reaction in the interface between irradiated polymer surface and deposited metal.


Sign in / Sign up

Export Citation Format

Share Document