Heat Treatment of Nanocrystalline Al2O3-Zr02

1996 ◽  
Vol 457 ◽  
Author(s):  
Bridget M. Smyser ◽  
Jane F. Connelly ◽  
Richard D. Sisson ◽  
Virgil Provenzano

ABSTRACTThe effects of grain size on the phase transformations in nanocrystalline ZrO2-Al2O3 have been experimentally investigated. Compositions from 10 to 50 vol% Al2O3 in ZrO2 were obtained as a hydroxide gel. The powders were then calcined at 600 °C for 17 hours and heat treated at 1100 °C for 24 and 120 hours and at 1200 °C for 2 hours. The phase distribution and grain size were determined using x-ray diffraction and transmission electron microscopy. The initial grain size after calcining was 8–17 nm. It was determined that the critical ZrO2 grain size to avoid the tetragonal to monoclinic phase transformation on cooling from 1100 °C was between 17 and 25 nm. Samples containing 50% Al2O3 maintained a grain size below the critical size for all times and temperatures. The 30% Al2O3 samples showed the same behavior in all but one heat treatment. The remainder of the samples showed significant grain growth and at least partial transformation to the monoclinic phase.

2005 ◽  
Vol 20 (9) ◽  
pp. 2480-2485 ◽  
Author(s):  
Kohei Kadono ◽  
Tatsuya Suetsugu ◽  
Takeshi Ohtani ◽  
Toshihiko Einishi ◽  
Takashi Tarumi ◽  
...  

Copper(I) chloride and bromide nanoparticle-dispersed glasses were prepared by means of a conventional copper staining. The staining was performed by the following process: copper stain was applied on the surfaces of Cl−- or Br−-ion-containing borosilicate glasses, and the glasses were heat-treated at 510 °C for various times. Typical exciton bands observed in the absorption spectra of the glasses after the heat treatment indicated that CuCl and CuBr particles were formed in the surface region of the glasses. The average sizes of the CuCl and CuBr particles in the glasses heat-treated for 48 h were estimated at 4.8 and 2.7 nm, respectively. The nanoparticles were also characterized by x-ray diffraction and transmission electron microscopy. Depth profiles of Cu and CuBr concentration in the glass heat-treated for 48 h were measured. Copper decreased in concentration monotonously with depth, reaching up to 60 μm, while the CuBr concentration had a maximum at about 25 μm in depth.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


2012 ◽  
Vol 05 ◽  
pp. 841-846
Author(s):  
AMIR KEYVANARA ◽  
REZA GHOLAMIPOUR ◽  
SHAMSEDIN MIRDAMADI ◽  
FARZAD SHAHRI ◽  
HOSSEIN SEPEHRI AMIN

Melt spun ribbons of Co 64 Fe 4 Ni 2 B 19 Si 8 Cr 3 alloy have been prepared and the nanocrystallization process was carried out by the heat treatment of the as spun ribbons above the crystallization temperature. Structural studies of the samples have been performed by transmission electron microscopy and X-ray diffraction. Magnetic properties of the samples and magnetoimpedance measurements were investigated and it was revealed that magnetic properties and magnetoimpedance of the samples deteriorate by the formation of nanocrystalline phases.


1985 ◽  
Vol 54 ◽  
Author(s):  
A. Lahav ◽  
M. Eizenberg ◽  
Y. Komem

ABSTRACTThe reaction between Ni60Ta40 amorphous alloy and (001) GaAs was studied by cross-sectional transmission electron microscopy, Auger spectroscopy, and x-ray diffraction. At 400°C formation of Ni GaAs at the interface with GaAs was observed. After heat treatment at 600°C in vacuum a layered structure of TaAs/NiGa/GaAs has been formed. The NiGa layer has epitaxial relations to the GaAs substrate. The vertical phase separation can be explained by opposite diffusion directions of nickel and arsenic atoms.


2011 ◽  
Vol 295-297 ◽  
pp. 1095-1098
Author(s):  
Chun Kan

The air-water interfacial zirconia film composed of nanodisks with self-assembly structure is prepared. Scanning electron microscopy (SEM), Energy Dispersive Spectrum (EDS), X-ray diffraction (XRD) and Transmission electron microscopy (TEM) are used to characterize the film. Furthermore, the heat-treatment of this film is studied by thermogravimetry and differential thermal analysis (TG-DTA), XRD, and Raman spectroscopy (Raman). The results suggest that the zirconia of the samples changes from amorphous phase to t-ZrO2phase then m-ZrO2phase with the rise of calcined temperature.


2017 ◽  
Vol 1143 ◽  
pp. 26-31
Author(s):  
Lucica Balint ◽  
Gina Genoveva Istrate

Research has shown the relationship among hardness, usage and corrosion resistance Ni-P-Al2O3 composite coatings on steel support heat treated. The electroless strips were heat treated at 200°C, 300°C, 400°C, 500°C and 600°C. Further studies on corrosion, hardness and usage revealed changes in properties, compared to the initial state, both on the strips coated with Ni-P and the ones coated with Ni-P-Al2O3 composite. The samples have been studied before and after the heat treatment via Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDX) and X-Ray Diffraction (XRD). The results show that untreated Ni-P layers exhibit strong corrosion resistance, while hardness and usage increase with heat treatment temperature, with a peak at 400 °C. Using suspended particles co-deposition, led to new types of layers, some with excellent hardness and usage properties. Corrosion resistance increase with heat treatment. Coating layers can be adjusted to the desired characteristics, by selecting proper parameters for the expected specific results.


2000 ◽  
Vol 56 (4) ◽  
pp. 659-665 ◽  
Author(s):  
I. P. Zibrov ◽  
V. P. Filonenko ◽  
M. Sundberg ◽  
P.-E. Werner

A sample of Ta2O5, ditantalum pentaoxide, heat-treated in a `toroid'-type high-pressure chamber at P = 8 GPa and T = 1470 K, was studied by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). Two high-pressure modifications of Ta2O5, isostructural with B-Nb2O5 and Z-Nb2O5, were identified from the X-ray powder pattern. Both structures were refined by the Rietveld method from the X-ray diffraction data: B-Ta2O5, a = 12.7853 (4), b = 4.8537 (1), c = 5.5276 (2) Å, β = 104.264 (2)°, V = 332.45 Å3, Z = 4, space group C2/c; Z-Ta2O5, a = 5.2252 (1), b = 4.6991 (1), c = 5.8534 (1) Å, β = 108.200 (2)°, V = 136.53 Å3, Z = 2, space group C2. The Z-Ta2O5 modification is new. The Ta atoms are six-coordinated in B-Ta2O5 and seven-coordinated in Z-Ta2O5. The two structures are closely related, which makes an intergrowth and a transformation between them possible. An idealized model of the intergrowth structure has been given. The HRTEM study showed defect-rich B-Ta2O5 crystals, which could be interpreted as an intergrowth between the B-Ta2O5 and Z-Ta2O5 phases.


2011 ◽  
Vol 393-395 ◽  
pp. 370-372
Author(s):  
Cun Jing Wang ◽  
Peng Yao ◽  
Gai Rong Chen

Catalytic decomposition of acetylene was carried out at 400 °C using iron supported on sodium chloride as catalyst and the product was heat-treated at 650 °C under an argon atmosphere for 2 h directly. The sample was examined by scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction. The results show that nano onion-like fullerenes encapsulating Fe cores with diameters in the range 20-50 nm were obtained.


Sign in / Sign up

Export Citation Format

Share Document