Optical Activation of Erbium Doped Porous Silicon by Hydrogen Plasma Treatment

1997 ◽  
Vol 486 ◽  
Author(s):  
T. Dejima ◽  
R. Saito ◽  
S. Yugou ◽  
H. Isshiki ◽  
T. Kimura

AbstractEr3+;-doped porous silicon (Er:PS) shows strong room temperature emissions at ˜ 1.54μm. However, its spectrum is usually much broader than that of Er-doped crystalline silicon (fullwidth at half maximum - FWHM - is ˜ 10 nm). It is probably because Er ions are located in amorphous phases. We report in this paper that strong and very sharp Er3+ 1.54μm emissions are obtained, when Er:PS samples are treated in a hydrogen plasma. Porous silicon layers are formed by anodic etching and then doped with Er3+ ions in an ErCl3/ethanol solution by an electrochemical method, and then treated in a hydrogen plasma at ˜ 1000°C from 0.5 min to 90 min for the optical activation. Several sharp peaks are observed at 20K, of which the strongest peak is located at 1.538 μm with an FWHM less than 1 nm. This value is comparable to that obtained from Er3+-doped crystalline silicon formed by means of molecular beam epitaxy (MBE) or ion implantation. Comparisons are made among hydrogen plasma, argon plasma, H2 flow and vacuum for the post-dope annealing atmosphere. Fourier-transform infrared (FT-IR) absorption and secondary ions mass spectrometry (SIMS) measurements are also carried out. We conclude that preferential etching of amorphous surface layers, and termination of dangling bonds of silicon nanocrystallites with hydrogen atoms and formation of Er-H complexes may be responsible for the strong and sharp Er3+-related luminescence.

2000 ◽  
Vol 609 ◽  
Author(s):  
L.N. Safronov ◽  
E.V. Spesivtsev ◽  
V.P. Popov ◽  
I.V. Antonova ◽  
A.K. Gutakovskii ◽  
...  

ABSTRACTStructural study of a-Si layers formed by high fluence hydrogen or deuterium implantation (up to 5×1017 cm−2) using high current beams with means of current up 40 mA/cm2 was carried out in the present work. The Si:H(D) silicon films were characterized using FTIR spectroscopy, spectroscopic ellipsometry, transmission electron microscopy and secondary ion mass spectrometry. Hydrogen solubility in crystalline silicon is low but ion implantation allows one to introduce hydrogen atoms in the concentration of 1022cm−3 or even more in thin silicon layer. High defect concentration in combination with high hydrogen activity causes the formation of mixed amorphous and crystalline phases with structure similar to silicon produced PECVD or laser ablation. The transformation of optical properties of this film during annealing in temperature range of 200-1050°C was investigated. The changes in optical characteristics and number of Si-H or Si-D bonds in the spectra of IR absorption is correlated with increase in crystalline volume of silicon with a temperature.


2007 ◽  
Vol 131-133 ◽  
pp. 425-430 ◽  
Author(s):  
Anis M. Saad ◽  
Oleg Velichko ◽  
Yu P. Shaman ◽  
Adam Barcz ◽  
Andrzej Misiuk ◽  
...  

The silicon substrates were hydrogenated at approximately room temperature and hydrogen concentration profiles vs. depth have been measured by SIMS. Czochralski grown (CZ) wafers, both n- and p-type conductivity, were used in the experiments under consideration. For analysis of hydrogen transport processes and quasichemical reactions the model of hydrogen atoms diffusion and quasichemical reactions is proposed and the set of equations is obtained. The developed model takes into account the formation of bound hydrogen in the near surface region, hydrogen transport as a result of diffusion of hydrogen molecules 2 H , diffusion of metastable complexes * 2 H and diffusion of nonequilibrium hydrogen atoms. Interaction of 2 H with oxygen atoms and formation of immobile complexes “oxygen atom - hydrogen molecule” (O - H2 ) is also taken into account to explain the hydrogen concentration profiles in the substrates of n-type conductivity. The computer simulation based on the proposed equations has shown a good agreement of the calculated hydrogen profiles with the experimental data and has allowed receiving a value of the hydrogen molecules diffusivity at room temperature.


1996 ◽  
Vol 422 ◽  
Author(s):  
H. Horiguchi ◽  
T. Kinone ◽  
R. Saito ◽  
T. Kimura ◽  
T. Ikoma

AbstractErbium films are evaporated on crystalline silicon substrates and are thermally diffused into silicon in an Ar+02 or H2 flow. Very sharp Er3+-related luminescence peaks are observed around 1.54 μ m.The main peak as well as the fine structures of the luminescence spectra depend on the annealing atmosphere, suggesting different luminescence centers. The full width at half maximum (FWHM) of the main peaks is ≤ 0.5nm at 20K. Thermal diffusion with Al films on top of the Er films is found to increase the intensity of the Er3+-related peaks greatly. The temperature dependence between 20 K and room temperature is relatively small, and a strong luminescence is obtained at room temperature.


1996 ◽  
Vol 431 ◽  
Author(s):  
D. R. Tallant ◽  
M. J. Kelly ◽  
T. R. Guilinger ◽  
R. L. Simpson

AbstractWe performed in-situ photoluminescence and Raman measurements on an anodized silicon surface in the HF/ethanol solution used for anodization. The porous silicon thereby produced, while resident in HF/ethanol, does not immediately exhibit intense photoluminescence. Intense photoluminescence develops spontaneously in HF/ethanol after 18–24 hours or with replacement of the HF/ethanol with water. These results support a quantum confinement mechanism in which exciton migration to traps and nonradiative recombination dominates the de-excitation pathways until silicon nanocrystals are physically separated and energetically decoupled by hydrofluoric acid etching or surface oxidation. The porous silicon surface, as produced by anodization, shows large differences in photoluminescence intensity and peak wavelength over millimeter distances. Parallel Raman measurements implicate nanometer-size silicon particles in the photoluminescence mechanism.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Hyukyong Kwon ◽  
Jaedoo Lee ◽  
Minjeong Kim ◽  
Soohong Lee

Solar cell is device that directly converts the energy of solar radiation to electrical energy. So it is important for solar cell to reduce the surface reflection of light in order to improve the efficiency of the device. Texturing and antireflection coating have been used to reduce the reflection of light. Texturing technology has reduced the 10% of incident light. However, there are a few disadvantages of random pyramid texturing that the results are not always reproducible in an industrial environment. And AR coating (MgF2, ZnS) is difficult to apply the standard industrial process because high vacuum is needed and the expense is very heavy. This paper investigates the formation of a thin film of porous silicon on the surface of crystalline silicon substrate without other AR coating layers. The formation of the porous silicon layer was measured with SEM (scanning electron microscopy). The formation of porous silicon layers on the textured silicon wafer resulted in lower than 5% of reflectance in the wavelength region from 400 to 1000 nm.


2012 ◽  
Vol 576 ◽  
pp. 511-515
Author(s):  
N.A. Asli ◽  
Maslihan Ain Zubaidah ◽  
S.F.M. Yusop ◽  
Khairunnadim Ahmad Sekak ◽  
Mohammad Rusop ◽  
...  

Porous silicon nanostructures (PSiN) are nanoporous materials which consist of uniform network of interconnected pore. The structure of PSiN is depending on etching parameters, including current density, HF electrolyte concentration, substrate doping type and level. In this work, the results of a structural p-type and n-type of porous silicon nanostructures were investigated by Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) is reported. Samples were prepared by photo-electrochemical anodization of p- and n-type crystalline silicon in HF electrolyte at different etching time. The surface morphology of PSiN was studied by FESEM with same magnification shown n-type surface form crack faster than p-type of PSiN. While the topography and roughness of PSiN was characterize by AFM. From topography shown the different etching time for both type PSiN produce different porosity and roughness respectively. There is good agreement between p- and n-type have different in terms of surface characteristic.


2015 ◽  
Vol 1758 ◽  
Author(s):  
Nicholas W. Piekiel ◽  
Christopher J. Morris ◽  
Wayne A. Churaman ◽  
David M. Lunking

ABSTRACTThe present study explores the burning of microscale porous silicon channels with sodium perchlorate. These on-chip porous silicon energetics were embedded in crystalline silicon, and therefore surrounded on three sides by an efficient thermal conductor. For slow burning systems, this presents complications as heat loss to the crystalline silicon substrate can result in inconsistent burning or flame extinction. We investigated <100 μm wide porous silicon strips, sparsely filled with sodium perchlorate (NaClO4), to probe the limits of on-chip combustion. Four different etch times were attempted to decrease the dimensions of the porous silicon strips. The smallest size achieved was 12 x 64 µm, and despite the small dimensions, demonstrated the same flame speed as the larger porous silicon strips of 6-7 m/s. We predict that unreacted porous silicon acts as a thermal insulator to aid combustion for slow burning porous silicon channels, and SEM images provide evidence to support this. We also investigated the small scale combustion of a rapidly burning sample (∼1200 m/s). Despite the rapid flame speed, the propagation followed a designed, winding flame path. The use of these small scale porous silicon samples could significantly reduce the energetic material footprint for future microscale applications.


Sign in / Sign up

Export Citation Format

Share Document