New Generations of Position Sensitive Silicon Detectors

1997 ◽  
Vol 487 ◽  
Author(s):  
P. Burger ◽  
M. Keters ◽  
L. Van Buul ◽  
J. Verplancke

AbstractThe new generation of elementary particle and nuclear physics experiments demand instrumentation with a more precise spatial resolution and a better and faster energy response. Nuclear physics and space experiments need position sensitive pad detectors having very thin entrance windows while high energy physics and medical applications use fast microstrip or drift detectors. Silicon pixel detectors can be improved by implementing integrated electronics on it. They allow a better X-ray energy resolution and are also used in hybrid photocathode tubes for faster timing and larger dynamic range.

2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


Author(s):  
G. Deptuch ◽  
M. Demarteau ◽  
J. Hoff ◽  
R. Lipton ◽  
A. Shenai ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Paolo Conci ◽  
Giovanni Darbo ◽  
Andrea Gaudiello ◽  
Claudia Gemme ◽  
Stefano Girardi ◽  
...  

Pixel technology is commonly used in the tracking systems of High Energy Physics detectors with physical areas that have largely increased in the last decades. To ease the production of several square meters of sensitive area, the possibility of using the industrial Wafer Level Packaging to reassemble good single sensor tiles from multiple wafers into a reconstructed full wafer is investigated. This process reconstructs wafers by compression molding using silicon charged epoxy resin. We tested high glass transition temperature low-stress epoxy resins filled with silica particles to best match the thermal expansion of the silicon die. These resins are developed and characterized for industrial processes, designed specifically for fan-out wafer-level package and panel-level packaging. In order to be compatible with wafer processing during the hybridization of the pixel detectors, such as the bump-bonding, the reconstructed wafer must respect challenging technical requirements. Wafer planarity, tile positioning accuracy, and overall thickness are amongst the main ones. In this paper the description of the process is given and preliminary results on a few reconstructed wafers using dummy tiles are reported. Strategies for Wafer Level Packaging improvements are discussed together with future applications to 3D sensors or CMOS pixel detectors.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-5
Author(s):  
Editorial team

Eurasian Journal of Physics and Functional Materials is an international journal published 4 numbers per year starting from October 2017. The aim of the journal is rapid publication of original articles and rewiews in the following areas: nuclear physics, high energy physics, radiation ecology, alternative energy (nuclear and hydrogen, photovoltaic, new energy sources, energy efficiency and energy saving, the energy sector impact on the environment), functional materials and related problems of high technologies.


2022 ◽  
Vol 17 (01) ◽  
pp. C01022
Author(s):  
T. Croci ◽  
A. Morozzi ◽  
F. Moscatelli ◽  
V. Sola ◽  
G. Borghi ◽  
...  

Abstract In this work, the results of Technology-CAD (TCAD) device-level simulations of non-irradiated and irradiated Low-Gain Avalanche Diode (LGAD) detectors and their validation against experimental data will be presented. Thanks to the intrinsic multiplication of the charge within these silicon sensors, it is possible to improve the signal to noise ratio thus limiting its drastic reduction with fluence, as it happens instead for standard silicon detectors. Therefore, special attention has been devoted to the choice of the avalanche model, which allows the simulation findings to better fit with experimental data. Moreover, a radiation damage model (called “New University of Perugia TCAD model”) has been fully implemented within the simulation environment, to have a predictive insight into the electrical behavior and the charge collection properties of the LGAD detectors, up to the highest particle fluences expected in the future High Energy Physics (HEP) experiments. This numerical model allows to consider the comprehensive bulk and surface damage effects induced by radiation on silicon sensors. By coupling the “New University of Perugia TCAD model” with an analytical model that describes the mechanism of acceptor removal in the multiplication layer, it has been possible to reproduce experimental data with high accuracy, demonstrating the reliability of the simulation framework.


2003 ◽  
Vol 50 (4) ◽  
pp. 1121-1128 ◽  
Author(s):  
A. Candelori ◽  
D. Bisello ◽  
R. Rando ◽  
A. Kaminski ◽  
J. Wyss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document