Computational, Electrochemical and 7Li NMR Studies of Lithiated Disordered Carbons Electrodes in Lithium Ion Cells

1997 ◽  
Vol 496 ◽  
Author(s):  
G. Sandί ◽  
R. E. Gerald ◽  
L. G. Scanlon ◽  
K. A. Carrado ◽  
R. E. Winans

ABSTRACTDisordered carbons that deliver high reversible capacity in electrochemical cells have been synthesized by using inorganic clays as templates to control the pore size and the surface area. The capacities obtained were much higher than those calculated if the resultant carbon had a graphitic-like structure. Computational chemistry was used to investigate the nature of lithium bonding in a carbon lattice unlike graphite. The lithium intercalated fullenere Lin-C60 was used as a model for our (non-graphitic) disordered carbon lattice. A dilithium-C60 system with a charge and multiplicity of (0,1) and a trilithium-C60 system with a charge and multiplicity of (0,4) were investigated. The spatial distribution of lithium ions in an electrochemical cell containing this novel disordered carbon material was investigated in situ by Li-7 NMR using an electrochemical cell that was incorporated into a toroid cavity nuclear magnetic resonance (NMR) imager. The concentration of solvated Li+ ions in the carbon anode appears to be larger than in the bulk electrolyte, is substantially lower near the copper/carbon interface, and does not change with cell charging.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4611
Author(s):  
Wen Ding ◽  
Xiaozhong Wu ◽  
Yanyan Li ◽  
Shuo Wang ◽  
Shuping Zhuo

The biomass-based carbons anode materials have drawn significant attention because of admirable electrochemical performance on account of their nontoxicity and abundance resources. Herein, a novel type of nickel-embedded carbon material (nickel@carbon) is prepared by carbonizing the dough which is synthesized by mixing wheat flour and nickel nitrate as anode material in lithium-ion batteries. In the course of the carbonization process, the wheat flour is employed as a carbon precursor, while the nickel nitrate is introduced as both a graphitization catalyst and a pore-forming agent. The in situ formed Ni nanoparticles play a crucial role in catalyzing graphitization and regulating the carbon nanocrystalline structure. Mainly owing to the graphite-like carbon microcrystalline structure and the microporosity structure, the NC-600 sample exhibits a favorable reversible capacity (700.8 mAh g−1 at 0.1 A g−1 after 200 cycles), good rate performance (51.3 mAh g−1 at 20 A g−1), and long-cycling durability (257.25 mAh g−1 at 1 A g−1 after 800 cycles). Hence, this work proposes a promising inexpensive and highly sustainable biomass-based carbon anode material with superior electrochemical properties in LIBs.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay9278 ◽  
Author(s):  
Wei Weng ◽  
Boming Jiang ◽  
Zhen Wang ◽  
Wei Xiao

Fixation of CO2 on the occasion of its generation to produce advanced energy materials has been an ideal solution to relieve global warming. We herein report a delicately designed molten salt electrolyzer using molten NaCl-CaCl2-CaO as electrolyte, soluble GeO2 as Ge feedstock, conducting substrates as cathode, and carbon as anode. A cathode-anode synergy is verified for coelectrolysis of soluble GeO2 and in situ–generated CO2 at the carbon anode to cathodic Ge nanoparticles encapsulated in carbon nanotubes (Ge@CNTs), contributing to enhanced oxygen evolution at carbon anode and hence reduced CO2 emissions. When evaluated as anode materials for lithium-ion batteries, the Ge@CNTs hybrid shows high reversible capacity, long cycle life, and excellent high-rate capability. The process contributes to metallurgy with reduced carbon emissions, in operando CO2 fixation to advanced energy materials, and upgraded conversion of carbon bulks to CNTs.


2019 ◽  
Vol 7 (14) ◽  
pp. 8460-8471 ◽  
Author(s):  
Joseph F. S. Fernando ◽  
Chao Zhang ◽  
Konstantin L. Firestein ◽  
Jawahar Y. Nerkar ◽  
Dmitri V. Golberg

The role of the carbonaceous component in the excellent (de)lithiation properties of a ZnO/carbon anode material, as revealed by in situ TEM.


2020 ◽  
Vol 124 (52) ◽  
pp. 28614-28622
Author(s):  
Edda Winter ◽  
Philipp Seipel ◽  
Vanessa Miß ◽  
Stefan Spannenberger ◽  
Bernhard Roling ◽  
...  

2015 ◽  
Vol 3 (4) ◽  
pp. 1619-1623 ◽  
Author(s):  
Heyuan Qiu ◽  
Lingxing Zeng ◽  
Tongbin Lan ◽  
Xiaokun Ding ◽  
Mingdeng Wei

The GeO2/RGO electrode is successfully fabricated via a facile dip-coating route cooperated with in situ hydrolysis of GeCl4 and used directly as a binder-free anode for LIBs. This material exhibited high reversible capacity, good cycling performance and excellent rate capability.


2014 ◽  
Vol 62 (1) ◽  
pp. 159-187 ◽  
Author(s):  
J. Arai ◽  
Y. Okada ◽  
T. Sugiyama ◽  
M. Izuka ◽  
K. Gotoh ◽  
...  

1997 ◽  
Vol 496 ◽  
Author(s):  
S. Wang ◽  
H. Matsui ◽  
Y. Matsumura ◽  
T. Yamabe

ABSTRACTIn fully-charged carbon materials, we tried to determine the nature of the interaction between Li species and carbon using variable temperature measurements of the Li Knight shift Only one interaction between the Li species and graphite carbon was observed from room temperature to -10°C. However, while only one average interaction between the Li species and the disordered carbon was observed at room temperature, three kinds of interactions were observed at low temperature. These results provide direct evidence for the model which explains why the discharge capacity of the carbon electrode with a disordered structure as an anode can exceed the theoretical capacity of a graphite anode in lithium ion rechargeable batteries.


2022 ◽  
Author(s):  
Sobana Perumaram Rangarajan ◽  
Partha P Mukherjee ◽  
Yevgen Barsukov ◽  
Conner Fear ◽  
Gayatri Dadheech ◽  
...  

Safe and reliable fast charging of lithium-ion batteries is contingent upon the development of facile methods of detection and quantification of lithium plating. Among the leading candidates for online lithium plating detection is analysis of the voltage plateau observed during the rest or discharge phase ensuing a charge. In this work, an operando metric, ‘S-factor,’ is developed from electrochemical data to quantitatively analyze the severity of lithium plating over a range of charge rates and temperatures. An in-situ visualization method is employed to study the physical mechanisms and phase transitions occurring at the graphite electrode during the voltage plateau.


Sign in / Sign up

Export Citation Format

Share Document