Surface Mobilities in Laser-Processed Polysilicon Films

1981 ◽  
Vol 5 ◽  
Author(s):  
R. C. Frye ◽  
K. K. Ng

ABSTRACTSurface mobilities in laser-processed polysilicon films were measured using silicon-gate n-channel thin-film transistors of varying dimensions. The apparent surface mobility inferred from transconductance measurements was found to be a decreasing function of channel length. For very short (~0.3/µm) channels, this mobility approaches the surface mobility of identical devices fabricated on bulk silicon. Furthermore, the temperature dependence of the surface mobilities in polycrystalline and bulk films was found to be identical.A novel EBIC technique was employed to examine the surface potential of transistors in operation. These measurements indicate a high degree of spatial nonuniformity in the inversion layer of polycrystalline films arising from the grain boundary region. A simple model of the transistors is presented which explains the geometry dependent surface mobility and its temperature dependence.

2006 ◽  
Vol 41 (19) ◽  
pp. 6193-6197 ◽  
Author(s):  
Goran Branković ◽  
Zorica Branković ◽  
Daniela Russo Leite ◽  
José Arana Varela

2021 ◽  
Vol 26 (5) ◽  
pp. 374-386
Author(s):  
K.O. Petrosyants ◽  
◽  
D.S. Silkin ◽  
D.A. Popov ◽  
Bo Li ◽  
...  

Transition from planar MOSFET structures to FinFET 3D structures ensures various radiation type resistance. However, the characteristics of radiation-exposed devices made at different factories vary considerably and it is hard to explain FinFET structures’ radiation resistance dependence on variations of their physical and topological parameters and electrical modes. In this work, a RAD-TCAD model of FinFET on bulk silicon was developed. Additional semi-empirical radiation dependences specific to FinFET structures were introduced into the basic model of a nanometer MOSFET: the charge carrier effective mobility, the traps concentration in the SiO2 and HfO2 oxides and at the Si / SiO2 interface. The model was implemented in the Sen-taurus Synopsys TCAD environment. The model was validated on a test set of FinFET structures with a channel length from 60 nm to 7 nm before and after exposure to gamma irradiation in the dose range up to 1 Mrad. Comparison of the modeled and experimental I-V characteristics has shown an error of no more than 15 %.


2021 ◽  
Author(s):  
Anubha Bilgaiyan ◽  
Seung-Il Cho ◽  
Miho Abiko ◽  
Kaori Watanabe ◽  
Makoto Mizukami

Abstract The low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f ]thieno[3,2-b]thiophene (4H-21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a record high saturation mobility of 8.8 cm2V− 1s− 1 was demonstrated as well as large on/off ratios (> 106) for relatively short channel lengths of 15 µm and an average carrier mobility of 10.5 cm2V-1s-1 for long channel length OTFTs (> 50 µm). The pseudo-CMOS inverter circuit with a channel length of 15 µm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 µs. The uniform and reproducible performance of 4H-21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.


2007 ◽  
Vol 364-366 ◽  
pp. 449-453
Author(s):  
Her Terng Yau ◽  
Chieh Li Chen ◽  
Ching Chang Cho

The past few years, have witnessed a rapid increase in the application of microfluidic devices to chemical and biological analyses. These devices offer significant advantages over their traditional counterparts, including reduced reagent consumption, a more rapid analysis and a significant improvement in performance. Species mixing is a fundamentally important aspect of these devices since it is this mixing which generates the biochemical reactions necessary for their successful operation. Many microfluidic applications require the mixing of reagents, but efficient mixing in these laminar (i.e., low Reynolds number) systems are typically difficult. Instead of using complex geometries and/or relatively long channels, an electric field is applied to drive flow mixing in microchannels. Generally, the fluid is driven by the application of an external periodic AC electric field. However, the chaotic AC electric filed is never used to drive flow mixing in microchannels. Chaotic behavior is a very interesting nonlinear effect. In some physical systems, chaos is a beneficial feature as it enhances mixing in chemical reactions. This paper presents a numerical investigation of electrokinetically-driven flow mixing in microchannels with chaotic electric field. The simulation results show that the application of a chaotic external field enables a reduction in the mixing channel length and a high degree of mixing efficiency. It is shown that a mixing performance as high as 90% can be achieved by chaotic external electric field.


Sign in / Sign up

Export Citation Format

Share Document