High Dielectric Constant Hf-Ti-Sn-O Off-Axis Cosputtered Films

1998 ◽  
Vol 541 ◽  
Author(s):  
L. F. Schneemeyer ◽  
R. B. van Dover ◽  
R. M. Fleming

AbstractNew Hf-Sn-Ti-O thin-film dielectric materials were explored using a compositional-spread approach. Thin films of composition Hf0.2Sn0.05Ti0.75O2 prepared at 250°C have excellent dielectric properties: 40-50 nm thick films with a dielectric constant of 40-60 were obtained, depending on the processing conditions, yielding a specific capacitance of 9-17 fF/µm2. Breakdown fields were measured to be about 4 MV/cm, yielding a Figure of Merit εε0Ebr=19 µC/cm2. Leakage currents, measured at 1 MV/cm, were in the range 10−7- 10−6 A/cm2. Film properties are strongly dependent on substrate temperature during deposition. Like their recently reported zirconium analogs, these materials are of interest for use in Si-IC device technology, for example as storage capacitors in DRAM.

2019 ◽  
Vol 5 (5) ◽  
pp. eaau9785 ◽  
Author(s):  
Sandhya Susarla ◽  
Thierry Tsafack ◽  
Peter Samora Owuor ◽  
Anand B. Puthirath ◽  
Jordan A. Hachtel ◽  
...  

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.


2016 ◽  
Vol 840 ◽  
pp. 87-90 ◽  
Author(s):  
Rosyaini Afindi Zaman ◽  
Mohamad Johari Abu ◽  
Saniah Abdul Karim ◽  
Julie Juliewatty Mohamed ◽  
Mohd Fadzil Ain ◽  
...  

In recent years, there has been an increasing interest on high dielectric constant that have significant applications in electronic devices. Dielectric materials have many technological applications such as capacitors, resonators and filters. High dielectric ceramic capacitors based perovskite oxides are necessary for modern electronic devices and are found to be suitable for a wide range of applications. Subramanian et al. discovered the high dielectric constant of CaCu3Ti4O12 (CCTO) ~ 10,000 at room temperature. CCTO has the cubic perovskite crystal structure and high dielectric constant of ~ 104 up to 105 at radio frequency and good temperature stability over a wide temperature range [1,2]. These properties were desired for various microelectronic applications. With the high dielectric constant, the material can store more charge and the values make CCTO an attractive material for ultra-high energy density capacitors. However, this properties can be accomplished if single phase of CCTO is formed. Many research have been done recently on the synthesis of the cubic perovskite CCTO and many techniques are working such as sol-gel route [3], combustion techniques [4], molten salt process [5] and etc., but this technique is difficult and complex process during sample preparation.


2021 ◽  
Vol 66 (2) ◽  
pp. 166
Author(s):  
B. Ghule ◽  
M. Laad

Materials exhibiting high dielectric constant (k) values find applications in capacitors, gate dielectrics, dielectric elastomers, energy storage device, while materials with low dielectric constant are required in electronic packaging and other such applications. Traditionally, high k value materials are associated with high dielectric losses, frequency-dependent dielectric behavior, and high loading of a filler. Materials with low k possess a low thermal conductivity. This creates the new challenges in the development of dielectric materials in both kinds of applications. Use of high dielectric constant filler materials increases the dielectric constant. In this study,the factors affecting the dielectric constant and the dielectric strength of polymer composites are explored. The present work aims to study the effect of various parameters affecting the dielectric properties of the materials. The factors selected in this study are the type of a polymer, type of a filler material used, size, shape, loading level and surface modification of a filler material, and method of preparation of the polymer composites. The study is focused on the dielectric enhancement of polymer nanocomposites used in the field of energy storage devices. The results show that the core-shell structured approach for high dielectric constant materials incorporated in a polymer matrix improves the dielectric constant of the polymer composite.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yong You ◽  
Chenhao Zhan ◽  
Ling Tu ◽  
Yajie Wang ◽  
Weibin Hu ◽  
...  

Flexible polymer-based composites exhibiting high dielectric constant as well as low dielectric loss have been intensively investigated for their potential utilization in electronics and electricity industry and energy storage. Resulting from the polar -CN on the side chain, polyarylene ether nitrile (PEN) shows relatively high dielectric constant which has been extensively investigated as one of the hot spots as dielectric materials. However, the dielectric constant of PEN is still much lower than the ceramic dielectrics such as BaTiO3, TiO2, and Al2O3. In this review, recent and in-progress advancements in the designing and preparing strategies to obtain high-k PEN-based nanocomposites are summarized. According to the types of the added fillers, the effects of organic fillers, dielectric ceramic fillers, and conductive fillers on electric properties of PEN-based composites are investigated. In addition, other factors including the structures and sizes of the additive, the compatibility between the additive agent and the PEN, and the interface which affects the dielectric properties of the obtained composite materials are investigated. Finally, challenges facing in the design of more effective strategies for the high-k PEN-based dielectric materials are discussed.


2002 ◽  
Vol 720 ◽  
Author(s):  
Satreerat Kampangkeaw ◽  
Charles T. Rogers

AbstractWe have measured the nonlinear dielectric properties of strontium titanate (STO) thin films grown on neodymium gallate (NGO) and lanthanum aluminate (LAO) substrates. The films prepared by off-axis pulsed laser deposition were characterized by their dielectric constant and loss tangent at 1 MHz and 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position of the substrates with respect to the plume axis. STO films on LAO substrates show low loss and high dielectric constant in regions near the plume axis. On the other hand, STO on NGO shows this effect only on the films grown far from the plume axis. We also obtained a figure of merit from the relative variation of the dielectric constant divided by the loss tangent in the presence of a DC electric field up to +/- 4 V/μm. Careful mapping of the plume crossection allowed us to improve the quality and reproducibility of the dielectric films, obtaining a best figure of merit at 2 GHz and 4 K close to 100 for NGO substrate but only well off axis.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4780
Author(s):  
Yushu Li ◽  
Yao Zhou ◽  
Sang Cheng ◽  
Jun Hu ◽  
Jinliang He ◽  
...  

The development of high-energy-density electrostatic capacitors is critical to addressing the growing electricity need. Currently, the widely studied dielectric materials are polymer nanocomposites incorporated with high-dielectric-constant nanoparticles. However, the introduction of high-dielectric-constant nanoparticles can cause local electric field distortion and high leakage current, which limits the improvement in energy density. In this work, on the basis of conventional polymer nanocomposites containing high-dielectric-constant nanoparticles, oriented boron nitride nanosheets (BNNSs) are introduced as an extra filler phase. By changing the volume ratios of barium titanate (BT) and BNNSs, the dielectric property of polymer nanocomposites is adjusted, and thus the capacitive energy storage performance is optimized. Experimental results prove that the oriented BNNSs can suppress the propagation of charge carriers and decrease the conduction loss. Using poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) as the polymer matrix, the P(VDF-HFP)/BNNS/BT nanocomposite has a higher discharged energy density compared with the conventional nanocomposite with the freely dispersed BT nanoparticles.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 698
Author(s):  
Junan Xie ◽  
Zhennan Zhu ◽  
Hong Tao ◽  
Shangxiong Zhou ◽  
Zhihao Liang ◽  
...  

The high dielectric constant ZrO2, as one of the most promising gate dielectric materials for next generation semiconductor device, is expected to be introduced as a new high k dielectric layer to replace the traditional SiO2 gate dielectric. The electrical properties of ZrO2 films prepared by various deposition methods and the main methods to improve their electrical properties are introduced, including doping of nonmetal elements, metal doping design of pseudo-binary alloy system, new stacking structure, coupling with organic materials and utilization of crystalline ZrO2 as well as optimization of low-temperature solution process. The applications of ZrO2 and its composite thin film materials in metal oxide semiconductor field effect transistor (MOSFET) and thin film transistors (TFTs) with low power consumption and high performance are prospected.


2015 ◽  
Vol 659 ◽  
pp. 58-63
Author(s):  
Oratai Jongprateep ◽  
Tunchanoke Khongnakhon ◽  
Jednupong Palomas

Rising worldwide demands for energy encourages development of high-efficiency energy storage and capacitor components. Main requirements for dielectric materials employed in fabrication of high energy density capacitors include high dielectric constant, high dielectric breakdown strength, and low dielectric loss. Owing to its high dielectric constant and low dielectric loss [1], barium titanate is among common capacitor materials. Tailoring of dielectric properties of barium titanate can be achieved through controlled chemical composition, microstructure, and crystal structure. Synthesis and processing techniques, as well as doping of barium titanate, can be key factors to control the composition and structure, which consequently contribute to enhancement of dielectric constant in the material.


Sign in / Sign up

Export Citation Format

Share Document