Highly Oriented Co Soft Magnetic Films on Si Substrates

1999 ◽  
Vol 562 ◽  
Author(s):  
Heng Gong ◽  
Wei Yang ◽  
Maithri Rao ◽  
David E. Laughlin ◽  
David N. Lambeth

ABSTRACTThin Co and Co based alloy films with the face centered cubic (FCC) structure have been epitaxially grown on single crystal Si wafers by sputter deposition. Epitaxial orientation relationships have been determined by x-ray diffraction, x-ray pole figure scans and TEM. Magnetic properties have been characterized using vibrating sampling magnetometer (VSM), torque magnetometer and BH loop tracer. Soft magnetic properties have been observed for the pure Co films.

2011 ◽  
Vol 335-336 ◽  
pp. 429-432 ◽  
Author(s):  
Xiu Yu Sun ◽  
Fa Qiang Xu

Highly ordered Cu, Ag and Au nanowire arrays with high aspect ratio and highly dense self-supporting nanowire patterns of copper group were successfully prepared using cyclic voltammetry with the assistance of anodic aluminum oxide (AAO) template. The X-ray diffraction (XRD) patterns of the metal nanowries were indexed to the face-centered cubic structure. The field emission scanning electron microscope (FE-SEM) results demonstrated that the length of nanowire could be controlled by changing the electrodepositon conditions. The aspect ratio of nanowire arrays can be tuned.


1994 ◽  
Vol 9 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Alan F. Jankowski ◽  
Mark A. Wall

The artificial layering of metals can change both physical and structural characteristics from the bulk. The stabilization of polymorphic metallic phases can occur on a dimensional scale that ranges from single overgrowth layers to repetitive layering at the nanoscale. The sputter deposition of crystalline titanium on nickel, as both a single layer and in multilayer form, has produced a face-centered cubic phase of titanium. The atomic structure of the face-centered cubic titanium phase is examined using high resolution electron microscopy in combination with electron and x-ray diffraction.


2021 ◽  
Vol 236 (3-4) ◽  
pp. 71-80
Author(s):  
Sivaprasad Ghanta ◽  
Anustoop Das ◽  
Rajat Kamboj ◽  
Partha P. Jana

Abstract The T phase in the Mn–Ni–Zn system was obtained as a product of high-temperature solid-state syntheses from the loaded composition of MnxNi2−xZn11 (x = 0.2–1.5)/MnxNi15.38−xZn84.62 (x = 1.54–11.54). The crystal structure of the T phase has been explored by means of X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The structures were solved in the face-centered cubic space group F 4 ‾ 3 m $F‾{4}3m$ (216) and contain 409–410 atoms/unit cell. The lattice constants were found to be a = 18.1727(2) and 18.1954(1) Å for crystals C1 and C2, respectively. The crystal structure denoted the T phase is a (2aγ)3-superstructure of the ordinary cubic γ-brass-type phase. The phase is isostructural to (Fe, Ni)Zn6.5. A “cluster” description has been used to visualize the crystal structure of the title phase. The structures have been constructed by the five distinct clusters and they are situated about the high symmetry sites of the face-centered cubic lattice. The T phase is stabilized at a valance electron concentration of 1.78, which is slightly higher than those expected for typical γ-brass Hume‐Rothery compounds.


1992 ◽  
Vol 280 ◽  
Author(s):  
Bryan E. Breyfogle ◽  
Richard J. Phillips

ABSTRACTThe conducting oxysalt Ag(Ag3O4)2NO3 has been electrodeposited onto highly oriented conducting oxides of Tl2 03 and Pb0.8Tl0.2O1.9. T12O3 was grown in a [100] texture while the Pb0.8Tl0.2O1.9 was grown with two different thickness-dependent textures of [110] and [210]. The orientation of the Ag(Ag3O4)2NO3 crystals with respect to the substrate surface was determined by x-ray diffraction. The face-centered-cubic Ag(Ag3O4)2N03 crystals deposited on body-centered-cubic T12 03 and face-centered-cubic Pb0.8Tl0.2O1.9 followed the orientation of these prelayers. However, Ag(Ag3O4)2N03 which was electrodeposited onto polycrystalline 430 stainless steel had a nearly random orientation. The lattice mismatch is 6.6% between T12 03 and Ag(Ag3O4)2N03, and it is 7.8% between Ag(Ag3O4)2N03 and the doubled unit cell of Pb0.8Tl0.2Ol.9.


1998 ◽  
Vol 528 ◽  
Author(s):  
V. Pierron-Bohnes ◽  
A. Michel ◽  
J.P. Jay ◽  
P. Panissod

AbstractEpitaxial Co/Mn superlattices (0.6 to 4.8 nm thick Co) have been grown on (0002) hcp Ru buffer layer on mica substrates. The face centered cubic (fcc) phase of cobalt is stabilized by the very thin manganese layer. The structural properties of these layers have been studied through x ray diffraction and nuclear magnetic resonance.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


2008 ◽  
Vol 373-374 ◽  
pp. 318-321
Author(s):  
J. Liang ◽  
M.K. Lei

Effects of stacking faults in a high nitrogen face-centered-cubic phase (γΝ) formed on plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel on peak shift and peak asymmetry of x-ray diffraction were investigated based on Warren’s theory and Wagner’s method, respectively. The peak shift from peak position of the γΝ phase is ascribed to the deformation faults density α, while the peak asymmetry of the γΝ phase is characterized by deviation of the center of gravity of a peak from the peak maximum (Δ C.G.) due to the twin faults density β. The calculated peak positions of x-ray diffraction patterns are consistent with that measured for plasma source ion nitrided 1Cr18Ni9Ti stainless steel.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


Author(s):  
V. S. Kraposhin ◽  
N. D. Simich-Lafitskiy ◽  
A. L. Talis ◽  
A. A. Everstov ◽  
M. Yu. Semenov

A mechanism is proposed for the nucleus formation at the mutual transformation of austenite and cementite crystals. The mechanism is founded on the interpretation of the considered structures as crystallographic tiling onto non-intersecting rods of triangulated polyhedra. A 15-vertex fragment of this linear substructure of austenite (cementite) can be transformed by diagonal flipping in a rhombus consisting of two adjacent triangular faces into a 15-vertex fragment of cementite (austenite). In the case of the mutual austenite–cementite transformation, the mutual orientation of the initial and final fragments coincides with the Thomson–Howell orientation relationships which are experimentally observed [Thompson & Howell (1988). Scr. Metall. 22, 229–233] in steels. The observed orientation relationship between f.c.c. austenite and cementite is determined by a crystallographic group–subgroup relationship between transformation participants and noncrystallographic symmetry which determines the transformation of triangulated clusters of transformation participants. Sequential fulfillment of diagonal flipping in the 15-vertex fragments of linear substructure (these fragments are equivalent by translation) ensures the austenite–cementite transformation in the whole infinite crystal. The energy barrier for diagonal flipping in the rhombus with iron atoms in its vertices has been calculated using the Morse interatomic potential and is found to be equal to 162 kJ mol−1 at the face-centered cubic–body-centered cubic transformation temperature in iron.


Sign in / Sign up

Export Citation Format

Share Document