Scanning Force Microscope Studies of Detachment of Nanometer Adhering Particulates

1999 ◽  
Vol 566 ◽  
Author(s):  
J. T. Dickinson ◽  
R. F. Hariadi ◽  
L. Scudiero ◽  
S. C. Langford

We employ salt particles deposited on soda lime glass substrates as a model system for particle detachment in chemically active environments. The chemical activity is provided by water vapor, and detachment is performed with the tip of a scanning force microscope. The later force required to detach nanometer-scale salt particles is a strong function of particle size and relative humidity. The peak lateral force at detachment divided by the nominal particle area yields an effective interfacial shear strength. The variation of shear strength with particle size and humidity is described in terms of chemically assisted crack growth along the salt-glass interface.

2004 ◽  
Vol 836 ◽  
Author(s):  
Ki-Hyun Kim ◽  
Young-Gab Chun ◽  
Byung-Ok Park ◽  
Kyung-Hoon Yoon

ABSTRACTCIGS nanoparticles for the CIGS absorber layer have been synthesized by low temperature colloidal routes. The CIGS absorber layers for solar cells have been prepared by spray deposition of CIGS nanoparticle precursors (∼20 nm) in glove box under inert atmosphere. An automatic air atomizing nozzle spray system with computer controlled X-Y step motor system was used to spray. The nanoparticle precursor CIGS film was deposited onto molybdenum-coated soda-lime glass substrates (2.5 cm × 5.0 cm) heated to 160°C. The film thickness in the range of 2 μm ± 0.3 μm was attained by spraying of 3 mM colloidal over an area of 12.5 cm2. The coalescence between particles was observed in the CIGS absorber layer under post-treatment of over 550 °C. This is related to the reactive sintering among the nanoparticles to reduce surface energy of the particles. The CuxSe thin film, formed on Mo film by evaporation, improved adhesion between CIGS and Mo layers and enhanced the coalescence of the particles in the CIGS layer. These are closely related to the fluxing of Cu2Se phase which has relatively low melting temperature. The CdS buffer layer was deposited on the CIGS/Mo/soda-lime glass substrate by chemical bath deposition. The CIGS nanoparticles-based absorber layers were characterized by using energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM).


2005 ◽  
Vol 865 ◽  
Author(s):  
P. D. Paulson ◽  
S. H. Stephens ◽  
W. N. Shafarman

AbstractVariable angle spectroscopic ellipsometry has been used to characterize Cu(InGa)Se2 thin films as a function of relative Ga content and to study the effects of Cu off-stoichiometry. Uniform Cu(InGa)Se2 films were deposited on Mo-coated soda lime glass substrates by elemental evaporation with a wide range of relative Cu and Ga concentrations. Optical constants of Cu(InGa)Se2 were determined over the energy range of 0.75–C4.6 eV for films with 0 ≤ Ga/(In+Ga) ≤ 1 and used to determine electronic transition energies. Further, the changes in the optical constants and electronic transitions as a function of Cu off-stoichiometry were determined in Cu-In-Ga-Se films with Cu atomic concentration varying from 10 to 25 % and Ga/(In+Ga) = 0.3. Films with Cu in the range 16–24 % are expected to contain 2 phases so an effective medium approximation is used to model the data. This enables the relative volume fractions of the two phases, and hence composition, to be determined. Two distinctive features are observed in the optical spectra as the Cu concentration decreases. First, the fundamental bandgaps are shifted to higher energies. Second, the critical point features at higher energies become broader suggesting degradation of the crystalline quality of the material.


2011 ◽  
Vol 22 (20) ◽  
pp. 205602 ◽  
Author(s):  
Young Joon Hong ◽  
Yong-Jin Kim ◽  
Jong-Myeong Jeon ◽  
Miyoung Kim ◽  
Jun Hee Choi ◽  
...  

2014 ◽  
Vol 1670 ◽  
Author(s):  
Antony Jan ◽  
Yesheng Yee ◽  
Bruce M. Clemens

ABSTRACTThin-film absorber layers for photovoltaics have attracted much attention for their potential for low cost per unit power generation, due both to reduced material consumption and to higher tolerance for defects such as grain boundaries. Cu2ZnGeSe4 (CZGSe) comprises one such material system which has a near-optimal direct band gap of 1.6 eV for absorption of the solar spectrum, and is made primarily from earth-abundant elements.CZGSe metallic precursor films were sputtered from Cu, Zn, and Ge onto Mo-coated soda lime glass substrates. These were then selenized in a two-zone close-space sublimation furnace using elemental Se as the source, with temperatures in the range of 400 to 500 C, and at a variety of background pressures. Films approximately 1-1.5 µm thick were obtained with the expected stannite crystal structure.Next, Cu2ZnSnSe4 (CZTSe), which has a direct band gap of 1.0 eV, was prepared in a similar manner and combined with CZGSe as either compositionally homogeneous or layered absorbers. The compositional uniformity of selenide absorbers made by selenizing compositionally homogeneous Cu-Zn-Ge-Sn precursor layers was determined and the band gap as a function of composition was investigated in order to demonstrate that the band gap is tuneable for a range of compositions. For layered Cu-Zn-Ge/Cu-Zn-Sn precursor films, the composition profile was measured before and after selenization to assess the stability of the layered structure, and its applicability for forming a band-gap-graded device for improved current collection.


2014 ◽  
Vol 63 ◽  
pp. 11-18 ◽  
Author(s):  
Daniel Nieto ◽  
Tamara Delgado ◽  
María Teresa Flores-Arias

2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


2017 ◽  
Vol 96 ◽  
pp. 107-116 ◽  
Author(s):  
Seyedali Emami ◽  
Jorge Martins ◽  
Luísa Andrade ◽  
Joaquim Mendes ◽  
Adélio Mendes

Sign in / Sign up

Export Citation Format

Share Document