scholarly journals Electron Backscatter Diffraction: A Powerful Tool for Phase Identification in the SEM

1999 ◽  
Vol 589 ◽  
Author(s):  
J. R. Michael ◽  
R. P. Goehner

AbstractEBSD in the SEM has been developed into a tool that can provide identification of unknown crystalline phases with a spatial resolution that is better than one micrometer. This technique has been applied to a wide range of materials. Use of the HOLZ rings in the EBSD patterns has enabled the reduced unit cell to be determined from unindexed EBSD patterns. This paper introduces EBSD for phase identification and illustrates the technique with examples from metal joining and particle analysis. Reduced unit cell determination from EBSD patterns is then discussed.

2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2000 ◽  
Vol 6 (S2) ◽  
pp. 946-947 ◽  
Author(s):  
J. R. Michael ◽  
R. P. Goehner

Electron backscatter diffraction (EBSD) is a technique that can provide identification of unknown crystalline phases while exploiting the excellent imaging capabilities of the scanning electron microscope (SEM). Phase identification using EBSD has now progressed to the point that it is commercially available. Phase identification in the SEM requires high quality EBSD patterns that can only be collected using either film or charge coupled device (CCD)-based cameras. High quality EBSD patterns obtained in this manner show many diffraction features that are useful in the determination of the unit cell of the sample.’ This paper will discuss the features in the EBSD patterns and the procedure used to determine the reduced unit cell of the sample.One of the major advantages of EBSD over electron diffraction in the transmission electron microscope is the remarkable field of view that is routinely attained. The large angular view of the diffraction pattern permits many zone axes and their associated symmetries to be viewed in a single pattern or at most a few patterns.


1997 ◽  
Vol 3 (S2) ◽  
pp. 387-388 ◽  
Author(s):  
J. R. Michael

This tutorial will describe the technique of electron backscattered diffraction (EBSD) in the scanning electron microscope (SEM). To properly exploit EBSD in the SEM it is important to understand how these patterns are formed. This discussion will be followed by a description of the hardware required for the collection of electron backscatter patterns (EBSP). We will then discuss the methods used to extract the appropriate crystallographic information from the patterns for orientation determination and phase identification and how these operations can be automated. Following this, a number of applications of the technique for both orientation studies and phase identification will be discussed.EBSD in the SEM is a phenomenon that has been known for many years. EBSD in the SEM is a technique that permits the crystallography of sub-micron sized regions to be studied from a bulk specimen. These patterns were first observed over 40 years ago, before the development of the SEM and were recorded using a special chamber and photographic film.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Penny E. Wieser ◽  
Marie Edmonds ◽  
John Maclennan ◽  
John Wheeler

AbstractDistorted olivines of enigmatic origin are ubiquitous in erupted products from a wide range of volcanic systems (e.g., Hawaiʻi, Iceland, Andes). Investigation of these features at Kīlauea Volcano, Hawaiʻi, using an integrative crystallographic and chemical approach places quantitative constraints on mush pile thicknesses. Electron backscatter diffraction (EBSD) reveals that the microstructural features of distorted olivines, whose chemical composition is distinct from undistorted olivines, are remarkably similar to olivines within deformed mantle peridotites, but inconsistent with an origin from dendritic growth. This, alongside the spatial distribution of distorted grains and the absence of adcumulate textures, suggests that olivines were deformed within melt-rich mush piles accumulating within the summit reservoir. Quantitative analysis of subgrain geometry reveals that olivines experienced differential stresses of ∼3–12 MPa, consistent with their storage in mush piles with thicknesses of a few hundred metres. Overall, our microstructural analysis of erupted crystals provides novel insights into mush-rich magmatic systems.


2020 ◽  
Vol 53 (4) ◽  
pp. 1060-1072 ◽  
Author(s):  
Edward L. Pang ◽  
Peter M. Larsen ◽  
Christopher A. Schuh

Resolving pseudosymmetry has long presented a challenge for electron backscatter diffraction and has been notoriously challenging in the case of tetragonal ZrO2 in particular. In this work, a method is proposed to resolve pseudosymmetry by building upon the dictionary indexing method and augmenting it with the application of global optimization to fit accurate pattern centers, clustering of the Hough-indexed orientations to focus the dictionary in orientation space and interpolation to improve the accuracy of the indexed solution. The proposed method is demonstrated to resolve pseudosymmetry with 100% accuracy in simulated patterns of tetragonal ZrO2, even with high degrees of binning and noise. The method is then used to index an experimental data set, which confirms its ability to efficiently and accurately resolve pseudosymmetry in these materials. The present method can be applied to resolve pseudosymmetry in a wide range of materials, possibly even some more challenging than tetragonal ZrO2. Source code for this implementation is available online.


Author(s):  
Jarle Hjelen ◽  
Erik Nes

In the EBSP method the stationary electron beam hits a highly tilted bulk specimen in the SEM. The backscattered Bragg diffracted electrons form the Kikuchi line pattern on a phosphor screen. Since the first EBSP experiments were carried out in 1973, this technique has been further developed to determine crystal orientations in connection with texture development in aluminium. Using the EBSP method to calculate local lattice curvatures in heavily deformed aluminium, the spatial resolution has to be better than the selected area channeling pattern (SACP) method.The EBSP resolution (d) was measured by moving the electron beam digitally across grain boundaries in an aluminium sample. The resolution was defined to be the overlapping distance between two diffraction patterns.


Sign in / Sign up

Export Citation Format

Share Document