Transmission Electron Microscope Studies of O, C, N Precipitation in Crystalline Silicon

1985 ◽  
Vol 59 ◽  
Author(s):  
A. Bourret

ABSTRACTThe understanding of the precipitation phenomena of light non dopant Impurities has been recently improved thanks to high resolution electron microscopy and microanalysis. After a one-step annealing in Czochralski silicon long coesite (SIO2) ribbons are formed between 485° and 750°C; amorphous platelets (SIOx with x =1. 2 to 2) are formed between 650°C -1050°C. Silicon Interstitlals generated during the precipitation partly relax the strain energy associated with the volume change. These Interstltlals are also able to precipitate In various forms. After a two-step annealing both platelets and/or octahedra containing amorphous SIOx are formed. The role of carbon on oxygen precipitation Is important: It changes the nucleation parameters and gives a retardation phenomena In a two-step annealing treatment. Similar phenomena are observed in oxygen implanted silicon. The nucleation and growth process able to explain these observations is far from being well understood. The SIO2 polymorphism, the Important role of SI Interstitials and the mutual attraction between oxygen and carbon are some of the ingredients which explain this complexity.

2011 ◽  
Vol 1288 ◽  
Author(s):  
G. Rosas ◽  
J. Chihuaque ◽  
C. Patiño-Carachure ◽  
R. Esparza ◽  
R. Pérez

ABSTRACTWell-crystallized AlN nanorods have been produced by mechanical milling and subsequent annealing treatment of the milling powders (mechanothermal process). High purity AlN powders were used as the starting material. Mechanical milling was carried out in a vibratory SPEX mill for 30 h, using vials and balls of silicon nitride. The annealing treatment was carried out at 1200 ºC for 10 min. The characterization of the samples was performed by X-ray diffractometry and transmission electron microscopy (TEM). TEM observations indicated that the synthesized nanorods consisted of 30 nm in diameter and 100 nm in length. High resolution electron microscopy observations have been used in the structural characterization. AlN nanorods exhibit a well-crystallized structure. The growing direction of the nanorods is close to the [001] direction. The structural configurations have been explored through comparisons between experimental HREM images and theoretically simulated images obtained with the multislice method of the dynamical theory of electron diffraction.


Author(s):  
Y.Y. Wang ◽  
H. Zhang ◽  
V.P. Dravid ◽  
L.D. Marks ◽  
P.D. Han ◽  
...  

Hiroi et al. have recently reported the occurrence of superconductivity at a transition temperature of ~ 70 K in Sr2CuO3+δ. They observed a superstructure with lattice constants of Neutron diffraction studies on this compound by Shimakawa et al. indicate that the apical oxygen is fully occupied, whereas the oxygen in CuO2 plane is half occupied. If oxygen does not fully occupy in the conducting CuO2 planes, it raises doubts about our current understanding of superconductivity in the cuprates, which relies on full oxygen occupancy for the CuO2 planes.Recently, Han et al. observed a dependence of Tc on post annealing treatment of the high pressure synthesized Sr2CuO3+δ. They noticed that heating the sample to 300°C increased the Tc from 70 K to 94 K and that further heating to 450°C caused the sample to lose superconductivity.In order to investigate the structural and microchemical details of Sr2CuO3+δ, transmission electron diffraction, high resolution electron microscopy, and electron energy loss spectroscopy are employed.


Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


Author(s):  
Jan-Olle Malm ◽  
Jan-Olov Bovin

Understanding of catalytic processes requires detailed knowledge of the catalyst. As heterogeneous catalysis is a surface phenomena the understanding of the atomic surface structure of both the active material and the support material is of utmost importance. This work is a high resolution electron microscopy (HREM) study of different phases found in a used automobile catalytic converter.The high resolution micrographs were obtained with a JEM-4000EX working with a structural resolution better than 0.17 nm and equipped with a Gatan 622 TV-camera with an image intensifier. Some work (e.g. EDS-analysis and diffraction) was done with a JEM-2000FX equipped with a Link AN10000 EDX spectrometer. The catalytic converter in this study has been used under normal driving conditions for several years and has also been poisoned by using leaded fuel. To prepare the sample, parts of the monolith were crushed, dispersed in methanol and a drop of the dispersion was placed on the holey carbon grid.


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


2001 ◽  
Vol 16 (8) ◽  
pp. 2189-2191 ◽  
Author(s):  
Guo-Dong Zhan ◽  
Mamoru Mitomo ◽  
Young-Wook Kim ◽  
Rong-Jun Xie ◽  
Amiya K Mukherjee

Using a pure α–SiC starting powder and an oxynitride glass composition from the Y–Mg–Si–Al–O–N system as a sintering additive, a powder mixture was hot-pressed at 1850 °C for 1 h under a pressure of 20 MPa and further annealed at 2000 °C for 4 h in a nitrogen atmosphere of 0.1 MPa. High-resolution electron microscopy and x-ray diffraction studies confirmed that a small amount of β–SiC was observed in the liquid-phase-sintered α–SiC with this oxynitride glass, indicating stability of β–SiC even at high annealing temperature, due to the nitrogen-containing liquid phase.


1999 ◽  
Vol 571 ◽  
Author(s):  
N. D. Zakharov ◽  
P. Werner ◽  
V. M. Ustinov ◽  
A.R. Kovsh ◽  
G. E. Cirlin ◽  
...  

ABSTRACTQuantum dot structures containing 2 and 7 layers of small coherent InAs clusters embedded into a Si single crystal matrix were grown by MBE. The structure of these clusters was investigated by high resolution transmission electron microscopy. The crystallographic quality of the structure severely depends on the substrate temperature, growth sequence, and the geometrical parameters of the sample. The investigation demonstrates that Si can incorporate a limited volume of InAs in a form of small coherent clusters about 3 nm in diameter. If the deposited InAs layer exceeds a critical thickness, large dislocated InAs precipitates are formed during Si overgrowth accumulating the excess of InAs.


1984 ◽  
Vol 37 ◽  
Author(s):  
N. Otsuka ◽  
L. A. Kolodziejski ◽  
R. L. Gunshor ◽  
S. Datta ◽  
R. N. Bicknell ◽  
...  

AbstractCdTe films have been grown on GaAs substrates with two types of interfaces - one with the epitaxial relation (111)CdTe║ (100)GaAs and the other with (100)CdTe║ (100)GaAs,. High resolution electron microscope observation of the two types of interfaces was carried out in order to determine the role of the substrate surface microstructure in determining the epitaxy. The interface of the former type shows a direct contact between the CdTe and GaAs crystals, while the interface of the latter type has a very thin oxide layer (∼10 Å in thickness) between the two crystals. These observations suggest that details of the substrate preheating cycle prior to film growth is the principle factor in determining which epitaxial relation occurs in this system. The relation between interfacial structures and the origin of the two epitaxial relations is discussed.


1980 ◽  
Vol 2 ◽  
Author(s):  
Fernando A. Ponce

ABSTRACTThe structure of the silicon-sapphire interface of CVD silicon on a (1102) sapphire substrate has been studied in crøss section by high resolution transmission electron microscopy. Multibeam images of the interface region have been obtained where both the silicon and sapphire lattices are directly resolved. The interface is observed to be planar and abrupt to the instrument resolution limit of 3 Å. No interfacial phase is evident. Defects are inhomogeneously distributed at the interface: relatively defect-free regions are observed in the silicon layer in addition to regions with high concentration of defects.


Sign in / Sign up

Export Citation Format

Share Document