Theoretical and Experimental Analysis of the Low Dielectric Constant of Fluorinated Silica

2000 ◽  
Vol 612 ◽  
Author(s):  
A. Demkov ◽  
S. Zollner ◽  
R. Liu ◽  
D. Werho ◽  
M. Kottke ◽  
...  

AbstractFluorinated silica has a dielectric constant lower than that of F-free SiO2 and is a potential interlayer dielectric. We investigate the F-doped SiO2 with ab-initio modeling and various characterization techniques searching to explain the dielectric constant reduction. FTIR transmission and spectroscopic ellipsometry give us information about the ionic and electronic contributions to ε. Nuclear reaction analysis and Auger spectrometry measure F composition. XPS and FTIR provide information on the atomic structure of the film. We use several cells of cristobalite to model fluorinated silica using the electronic structure theory. The ground state geometry, vibrational density of states, electronic band structure, and Born effective charges are analyzed. The calculations suggest that it is the ionic component of the dielectric constant that is mostly effected by the F incorporation.

1999 ◽  
Vol 579 ◽  
Author(s):  
A. Demkov ◽  
R. Liu ◽  
S. Zollner ◽  
D. Werho ◽  
M. Kottke ◽  
...  

ABSTRACTFluorinated silica has a dielectric constant E in the range of 3—3.5, lower than that of F-free SiO2 (ω=4). The reasons behind this reduction are controversial. It is not known whether the electronic or ionic contributions to the overall screening are being diminished upon F doping. To shed more light on this phenomenon we have studied F-doped SiO2 with ab-initio modeling and various characterization techniques. FTIR transmission and spectroscopic ellipsometry give us information about the ionic and electronic contributions to ω Nuclear reaction analysis and Auger spectrometry measure F composition. XPS and FTIR provide information on the atomic structure and stability of the film. We use a large cell of cristobalite to model fluorinated silica theoretically. The ground state geometry is obtained via energy minimization. We calculate the vibrational density of states and find a localized mode (Si-F stretch), in good agreement with FTIR transmission. We analyze the effects of F incorporation on the dielectric properties.


2014 ◽  
Vol 2 (19) ◽  
pp. 3762-3768 ◽  
Author(s):  
Muhammad Usman ◽  
Cheng-Hua Lee ◽  
Dung-Shing Hung ◽  
Shang-Fan Lee ◽  
Chih-Chieh Wang ◽  
...  

A Sr-based metal–organic framework exhibits an intrinsic low dielectric constant after removing the water molecules. A low dielectric constant and high thermal stability make this compound a candidate for use as a low-k material.


1995 ◽  
Vol 390 ◽  
Author(s):  
C. P. Wong

ABSTRACTA modem VLSI device is a complicated three-dimensional structure that consists of multilayer metallization conductor lines which are separated with interlayer-dielectrics as insulation. This VLSI technology drives the IC device into sub-micron feature size that operates at ultra-fast speed (in excess of > 100 MHz). Passivation and interlayer dielectric materials are critical to the device performance due to the conductor signal propagation delay of the high dielectric constant of the material. Low dielectric constant materials are the preferred choice of materials for this reasons. These materials, such as Teflon® and siloxanes (silicones), are desirable because of their low dielectric constant (∈1) = 2.0, 2.7, respectively. This paper describes the use of a low dielectric constant siloxane polymer (silicone) as IC devices passivation layer material, its chemistry, material processes and reliability testing.


1995 ◽  
Vol 381 ◽  
Author(s):  
Y.K. Lee ◽  
S.P. Murarka ◽  
S. -P. Jeng ◽  
B. Auman

AbstractLow dielectric constant interlayer dielectric ( ILD) materials are required for the advanced silicon integrated electronics such as those in the ULSI era[3, 10]. We have investigated several such materials. In this paper the results of our investigations of the materials and electrical properties, processing ( to form ILD ), and applicability of a DuPont fluorinated polyimide are described and discussed. Weight loss, FTIR, and ellipsometric measurements have been carried out. The DuPont fluorinated polyimide thin film was observed to be thermally stable up to 450°C, which is monitored by using dynamic TGA with a ramping rate of 10°C/min or 5°C/min in N2 Ambient. Also MIPOS capacitor characterization, effect of temperature and moisture on these properties have been determined. The dielectric constant was observed to be as low as 2.5 and the refractive index is around 1.63, both being stable up to 450°C. However, the DuPont Fluorinated polyimide exhibited a flat band voltage shift on C-V curve after 400°C annealing in vacuum environments for 1 hr. Compatibility with copper as the interconnecting metal has been determined and discussed[8]. It is concluded that this polymer is a possible candidate for ILD application.


2011 ◽  
Vol 110-116 ◽  
pp. 5380-5383
Author(s):  
Tejas R. Naik ◽  
Veena R. Naik ◽  
Nisha P. Sarwade

Scaling down the integrated circuits has resulted in the arousal of number of problems like interaction between interconnect, crosstalk, time delay etc. These problems can be overcome by new designs and by use of corresponding novel materials, which may be a solution to these problems. In the present paper we try to put forward very recent development in the use of novel materials as interlayer dielectrics (ILDs) having low dielectric constant (k) for CMOS interconnects. The materials presented here are porous and hybrid organo-inorganic new generation interlayer dielectric materials possessing low dielectric constant and better processing properties.


2001 ◽  
Vol 714 ◽  
Author(s):  
Yoon-Hae Kim ◽  
Moo Sung Hwang ◽  
Young Lee ◽  
Hyeong Joon Kim

ABSTRACTCarbon-containing silicon oxide (SiOC) is regarded as a potential low dielectric constant (low-κ) material for an interlayer dielectric (ILD) in next generation interconnection. In this study, we present the fundamental film properties and integration process compatibility of the low-κ SiOC film deposited by using bistrimethylsilylmethane (BTMSM) precursor. As more carbon was incorporated into film, both film density and dielectric constant decreased. The lowest κ-value, which we have obtained in this study, was 2.3 and the hardness of SiOC film was 1.1GPa as well as showing the thermal stability up to 500°C. In case of using conventional gases, organic components in SiOC film restricted etch rate. However, O2 addition could make it possible to obtaine a reasonable etch rate. The post-treatment of SiOC film in hydrogen plasma improved the resistance to O2 plasma in ashing process. The compatibility of SiOC film to the CMP process was also examined.


1997 ◽  
Vol 476 ◽  
Author(s):  
John Pellerin ◽  
Robert Fox ◽  
Huei-Min Ho

AbstractThis paper presents the results of development, characterization and integration screening of low dielectric constant (low k) fluorinated polyimides for interlayer dielectric applications. Evolution of these materials has progressed with the intent of improving fundamental thin film properties, such as thermal stress behavior, modulus, CTE, and dielectric constant. Further refinements to fluorinated polyimides have been to improve their process compatibility and integration characteristics, primarily in the area of deep sub-micron gap filling. The avenues taken to attain these objectives will be illustrated.Subsequent integration of low k fluorinated polyimides has been achieved for a completed single-level metal BEOL test vehicle to highlight the impacts of the film's adhesion, mechanical and thermomechanical properties. In addition, the completed fluorinated polyimide single-level metal structures have been used to characterize electrical performance in contrast to single-level metal structures with TEOS dielectric. Intralevel capacitance and leakage current have been measured with dual comb and serpentine structures. Modeling has been applied to verify dielectric constant in submicron geometries from the capacitance measurements.


Sign in / Sign up

Export Citation Format

Share Document