Siloxane Polymers as Low Dielectric Materials for Microelectronics

1995 ◽  
Vol 390 ◽  
Author(s):  
C. P. Wong

ABSTRACTA modem VLSI device is a complicated three-dimensional structure that consists of multilayer metallization conductor lines which are separated with interlayer-dielectrics as insulation. This VLSI technology drives the IC device into sub-micron feature size that operates at ultra-fast speed (in excess of > 100 MHz). Passivation and interlayer dielectric materials are critical to the device performance due to the conductor signal propagation delay of the high dielectric constant of the material. Low dielectric constant materials are the preferred choice of materials for this reasons. These materials, such as Teflon® and siloxanes (silicones), are desirable because of their low dielectric constant (∈1) = 2.0, 2.7, respectively. This paper describes the use of a low dielectric constant siloxane polymer (silicone) as IC devices passivation layer material, its chemistry, material processes and reliability testing.

2014 ◽  
Vol 2 (19) ◽  
pp. 3762-3768 ◽  
Author(s):  
Muhammad Usman ◽  
Cheng-Hua Lee ◽  
Dung-Shing Hung ◽  
Shang-Fan Lee ◽  
Chih-Chieh Wang ◽  
...  

A Sr-based metal–organic framework exhibits an intrinsic low dielectric constant after removing the water molecules. A low dielectric constant and high thermal stability make this compound a candidate for use as a low-k material.


2011 ◽  
Vol 110-116 ◽  
pp. 5380-5383
Author(s):  
Tejas R. Naik ◽  
Veena R. Naik ◽  
Nisha P. Sarwade

Scaling down the integrated circuits has resulted in the arousal of number of problems like interaction between interconnect, crosstalk, time delay etc. These problems can be overcome by new designs and by use of corresponding novel materials, which may be a solution to these problems. In the present paper we try to put forward very recent development in the use of novel materials as interlayer dielectrics (ILDs) having low dielectric constant (k) for CMOS interconnects. The materials presented here are porous and hybrid organo-inorganic new generation interlayer dielectric materials possessing low dielectric constant and better processing properties.


1997 ◽  
Vol 476 ◽  
Author(s):  
C.T. Rosenmaver ◽  
J. W. Bartz ◽  
J. Hammes

AbstractPrevious work has demonstrated the potential of polytetrafluoroethylene (PTFE) thin films for ULSI applications. The films are deposited from PTFE nanoemulsions. They have an ultra-low dielectric constant of 1.7 to 2.0, a leakage current of less than 1.0 nA/cm2 @ 0.2 MV/cm and a dielectric strength of from 0.5 to 2.4 MV/cm. They are thermally stable (isothermal weight loss < 1.0 %/hr at 450 °C), uniform (thickness standard deviation < 2%), and have excellent gap-fill properties (viscosity of 1.55 cP and surface tension of 18 mN/m). The films are inert with respect to all known semiconductor process chemicals, yet they are easily etched in an oxygen plasma.This paper discusses the processing technology that has been developed to process PTFE films with these properties. Specifically, it addresses two recent discoveries: 1) Good adhesion of spin-coated PTFE to SiO2 surfaces; and 2) high dielectric strength of PTFE thin films spin-coat deposited onto rigid substrates. The adhesion-promoting and thermal treatments necessary to produce these properties are detailed. Stud pull test results and test results from metal-insulator-metal (MIM) capacitor structures are given.


2013 ◽  
Vol 1561 ◽  
Author(s):  
M.A Jithin ◽  
Lakshmi Ganapathi Kolla ◽  
Navakanta Bhat ◽  
S. Mohan ◽  
Yuichiro Morozumi ◽  
...  

ABSTRACTIn this study, synthesis and characterization of rutile-Titanium dioxide (TiO2) thin films using pulsed DC Magnetron Sputtering at room temperature, along with the fabrication and characterization of MIM capacitors have been discussed. XPS and RBS data show that the films are stoichiometric and have compositional uniformity. The influence of electrode materials on electrical characteristics of the fabricated MIM capacitors has been studied. The Al/TiO2/Al based capacitors show low capacitance density (9 fF/μm2) with low dielectric constant (K=25) and high EOT (3.67 nm) due to low dielectric constant TiO2 phase formation on Al/Si substrate. On the other hand, Ru/TiO2/Ru based capacitors show high capacitance density (49 fF/μm2) with high dielectric constant (K=130) and low EOT (0.7nm) values at high frequency (100 KHz) due to high dielectric constant phase (rutile) formation of TiO2, on Ru/Si substrate. Raman spectra confirm that the films deposited on Ru/Si substrate show the rutile phase.


2007 ◽  
Vol 280-283 ◽  
pp. 85-88
Author(s):  
Lin Hu ◽  
He Ping Zhou ◽  
Hao Xue ◽  
Chun Lai Xu

Barium strontium titanium oxide (BSTO) has great advantages and potentiality for the application of microwave technology. In order to be used in phased array antennas, high dielectric tunability, relatively low dielectric constant and low dielectric loss are required. In this paper, MgO was mixed into BSTO and the microstructure and dielectric properties of MgO-mixed BSTO bulk ceramics were investigated. The mole ratio of Ba and Sr was rather fixed to 5:5 in this study. It is observed that a small amount of MgO (5 wt%) has gone beyond the solubility limits of Mg in BSTO. The dielectric constant and dielectric loss of BSTO ceramics decreased with the increase of the content of MgO mixed. However, the tunability of MgO-mixed BSTO ceramics decreased at the same time. 20wt% MgO-mixed BSTO ceramics exhibits preferable dielectric properties with acceptable tunability.


1995 ◽  
Vol 381 ◽  
Author(s):  
Y.K. Lee ◽  
S.P. Murarka ◽  
S. -P. Jeng ◽  
B. Auman

AbstractLow dielectric constant interlayer dielectric ( ILD) materials are required for the advanced silicon integrated electronics such as those in the ULSI era[3, 10]. We have investigated several such materials. In this paper the results of our investigations of the materials and electrical properties, processing ( to form ILD ), and applicability of a DuPont fluorinated polyimide are described and discussed. Weight loss, FTIR, and ellipsometric measurements have been carried out. The DuPont fluorinated polyimide thin film was observed to be thermally stable up to 450°C, which is monitored by using dynamic TGA with a ramping rate of 10°C/min or 5°C/min in N2 Ambient. Also MIPOS capacitor characterization, effect of temperature and moisture on these properties have been determined. The dielectric constant was observed to be as low as 2.5 and the refractive index is around 1.63, both being stable up to 450°C. However, the DuPont Fluorinated polyimide exhibited a flat band voltage shift on C-V curve after 400°C annealing in vacuum environments for 1 hr. Compatibility with copper as the interconnecting metal has been determined and discussed[8]. It is concluded that this polymer is a possible candidate for ILD application.


2016 ◽  
Vol 18 (28) ◽  
pp. 19183-19193 ◽  
Author(s):  
Cuijiao Zhao ◽  
Xiaonan Wei ◽  
Yawen Huang ◽  
Jiajun Ma ◽  
Ke Cao ◽  
...  

Although general porous materials have a low dielectric constant, their uncontrollable opened porous structure results in high dielectric loss and poor barrier properties, thus limiting their application as interconnect dielectrics.


2001 ◽  
Vol 714 ◽  
Author(s):  
Yoon-Hae Kim ◽  
Moo Sung Hwang ◽  
Young Lee ◽  
Hyeong Joon Kim

ABSTRACTCarbon-containing silicon oxide (SiOC) is regarded as a potential low dielectric constant (low-κ) material for an interlayer dielectric (ILD) in next generation interconnection. In this study, we present the fundamental film properties and integration process compatibility of the low-κ SiOC film deposited by using bistrimethylsilylmethane (BTMSM) precursor. As more carbon was incorporated into film, both film density and dielectric constant decreased. The lowest κ-value, which we have obtained in this study, was 2.3 and the hardness of SiOC film was 1.1GPa as well as showing the thermal stability up to 500°C. In case of using conventional gases, organic components in SiOC film restricted etch rate. However, O2 addition could make it possible to obtaine a reasonable etch rate. The post-treatment of SiOC film in hydrogen plasma improved the resistance to O2 plasma in ashing process. The compatibility of SiOC film to the CMP process was also examined.


Sign in / Sign up

Export Citation Format

Share Document