Location Control of Laterally Columnar Si Grains by Dual-Beam Excimer-Laser Melting of Si Thin-Film

2000 ◽  
Vol 621 ◽  
Author(s):  
Ryoichi Ishihara

ABSTRACTThe offset of the underlying TiW is introduced in the island of Si, SiO2 and TiW on glass. During the dual-beam excimer-irradiation to the Si and the TiW, the offset in TiW acts as an extra heat source, which melts completely the Si film near the edge, whereas the Si inside is partially melted. The laterally columnar Si grains with a length of 3.2 μm were grown from the inside of the island towards the edge. By changing the shape of the edge, the direction of the solidification of the grain was successfully controlled in such a way that the all grain-boundaries are directed towards the edge and a single grain expands. The grain-boundary-free area as large as 4 μm × 3 μm was obtained at a predetermined position of glass.

1995 ◽  
Vol 403 ◽  
Author(s):  
Hiroshi Okumura ◽  
Hiroshi Tanabe ◽  
Fujio Okumura

AbstractWe have found, for excimer laser crystallized poly-Si thin films, that there are two different grain growth processes that depend on the energy density. Columnar grains grow laterally at lower energy densities. The other grain growth process at higher energy densities is shown to be secondary grain growth caused by a less oriented structure with fine granular grains. A TFT with the maximum mobility is obtained at the border for the lower energy grain growth. Grain boundary and intragrain defects around grain boundary formed through the secondary grain growth reduce the mobility in spite of considerable grain enlargement.


2007 ◽  
Vol 558-559 ◽  
pp. 851-856 ◽  
Author(s):  
Takahisa Yamamoto ◽  
Teruyasu Mizoguchi ◽  
S.Y. Choi ◽  
Yukio Sato ◽  
Naoya Shibata ◽  
...  

SrTiO3 bicrystals with various types of grain boundaries were prepared by joining two single crystals at high temperature. By using the bicrystals, we examined their current-voltage characteristics across single grain boundaries from a viewpoint of point defect segregation in the vicinity of the grain boundaries. Current-voltage property in SrTiO3 bicrystals was confirmed to show a cooling rate dependency from annealing temperature, indicating that cation vacancies accumulate due to grain boundary oxidation. The theoretical results obtained by ab-initio calculation clearly showed that the formation energy of Sr vacancies is the lowest comparing with Ti and O vacancies in oxidized atomosphere. The formation of a double Schottky barrier (DSB) in n-type SrTiO3 is considered to be closely related to the accumulation of the charged Sr vacancies. Meanwhile, by using three types of low angle boundaries, the excess charges related to one grain boundary dislocation par unit length was estimated. In this study, we summarized our results obtained in our group.


Author(s):  
Guoxiong Zheng ◽  
Yifan Luo ◽  
Hideo Miura

Various brittle fractures have been found to occur at grain boundaries in polycrystalline materials. In thin film interconnections used for semiconductor devices, open failures caused by electro- and strain-induced migrations have been found to be dominated by porous random grain boundaries that consist of a lot of defects. Therefore, it is very important to explicate the dominant factors of the strength of a grain boundary in polycrystalline materials for assuring the safe and reliable operation of various products. In this study, both electron back-scatter diffraction (EBSD) analysis and a micro tensile test in a scanning electron microscope was applied to copper thin film which is used for interconnection of semiconductor devices in order to clarify the relationship between the strength and the crystallinity of a grain and a grain boundary quantitatively. Image quality (IQ) value obtained from the EBSD analysis, which indicates the average sharpness of the diffraction pattern (Kikuchi pattern) was applied to the crystallinity analysis. This IQ value indicates the total density of defects such as vacancies, dislocations, impurities, and local strain, in other words, the order of atom arrangement in the observed area in nano-scale. In the micro tensile test system, stress-strain curves of a single crystal specimen and a bicrystal specimen was measured quantitatively. Both transgranular and intergranular fracture modes were observed in the tested specimens with different IQ values. Based to the results of these experiments, it was found that there is the critical IQ value at which the fracture mode of the bicrystal specimen changes from brittle intergranular fracture at a grain boundary to ductile transgranular fracture in a grain. The strength of a grain boundary increases monotonically with IQ value because of the increase in the total number of rigid atomic bonding. On the other hand, the strength of a grain decreases monotonically with the increase of IQ value because the increase in the order of atom arrangement accelerates the movement of dislocations. Finally, it was clarified that the strength of a grain boundary and a grain changes drastically as a strong function of their crystallinity.


1996 ◽  
Vol 441 ◽  
Author(s):  
B. Sun ◽  
Z. Suo ◽  
W. Yang

AbstractDuring annealing of a polycrystalline thin film, grain-boundaries and film surfaces move. If the grain-boundaries move faster, the grains having the lowest free energy grow at the expense of others, resulting in a continuous film with large grains. If the film surfaces move faster, they groove along their junctions with the grain-boundaries, breaking the film to islands. This paper describes analytic solutions for steady surface motions, and discusses the morphology selection.


Sign in / Sign up

Export Citation Format

Share Document