Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

2001 ◽  
Vol 635 ◽  
Author(s):  
Donglu Shi ◽  
Zhou Yu ◽  
S. X. Wang ◽  
Wim J. van Ooij ◽  
L. M. Wang ◽  
...  

AbstractMulti-layer ultrathin polymer films have been deposited on the surfaces of nanoparticles of alumina using a plasma polymerization treatment. The nanoparticles ranged from 10-150 nm in spherical shapes. High-resolution transmission electron microscopy (HRTEM) experiments showed that an extremely thin film of the pyrrole layer (10-20 Å) was uniformly deposited on the surfaces of the nanoparticles. In particular, the particles of all sizes (10-150 nm) exhibited equally uniform ultrathin films indicating well-dispersed nanoparticles in the fluidized bed during the plasma treatment. After single layer coating, hexamethyldisiloxane (HMDSO) was coated again as a second layer onto the surface of pyrrole. Subsequently, a third layer of pyrrole was coated on the top of HMDSO film completing the multi-layer coating process. Time-of-Flight Secondary ion mass spectroscopy (TOFSIMS) experiments confirmed the deposition of these multi-layer thin films on the nanoparticles. The deposition mechanisms and the effects of plasma treatment parameters are discussed.

2002 ◽  
Vol 740 ◽  
Author(s):  
Peng He ◽  
Jie Lian ◽  
Donglu Shi ◽  
Lumin Wang ◽  
David Mast ◽  
...  

ABSTRACTUltrathin polymer films have been deposited on both single- and multi-wall carbon nanotubes using a plasma polymerization treatment. HRTEM experiments showed that an extremely thin film of the pyrrole layer (2–7 nm) was uniformly deposited on the surfaces of the nanotubes including inner wall surfaces of the multi-wall nanotubes. Time-of-Flight Secondary ion mass spectroscopy (TOFSIMS) experiments confirmed the nanosurface deposition of polymer thin films on the nanotubes. The deposition mechanisms and the effects of plasma treatment parameters are discussed.


2003 ◽  
Vol 791 ◽  
Author(s):  
Peng He ◽  
Jie Lian ◽  
Donglu Shi ◽  
Lumin Wang ◽  
Wim van Ooij ◽  
...  

ABSTRACTUltrathin polymer films have been deposited on both multi-wall and aligned carbon nanotubes using a plasma polymerization treatment. TEM experimental results showed that a thin film of polystyrene layer (several nanometers) was uniformly deposited on the surfaces of the nanotubes including inner wall surfaces of the multi-wall nanotubes. The coated multi-wall nanotubes were mixed in polymer solutions for studying the effects of plasma coating on dispersion. It was found that the dispersion of multi-wall carbon nanotubes in polystyrene composite was significantly improved. The deposition mechanisms and the effects of plasma treatment parameters are discussed.


2001 ◽  
Vol 703 ◽  
Author(s):  
Peng He ◽  
Jie Lian ◽  
L. M. Wang ◽  
Wim J. van Ooij ◽  
Donglu Shi

ABSTRACTUltrathin acrylic acid polymer films have been deposited on the surfaces of nanoparticles of ZnO using a plasma polymerization treatment. The average size of nanoparticles is on the order of 50 nm in irregular shapes. High-resolution transmission electron microscopy (HRTEM) experiments showed that an extremely thin film of the acrylic acid layer (15 nm) was uniformly deposited on the surfaces of the nanoparticles. In particular, the particles of all sizes exhibited equally uniform ultrathin films indicating a well-dispersed nanoparticles in the fluidized bed during the plasma treatment. The deposition mechanisms and the effects of plasma treatment parameters are discussed.


Langmuir ◽  
2014 ◽  
Vol 30 (5) ◽  
pp. 1444-1454 ◽  
Author(s):  
Behnam Akhavan ◽  
Karyn Jarvis ◽  
Peter Majewski

2001 ◽  
Vol 78 (9) ◽  
pp. 1243-1245 ◽  
Author(s):  
Donglu Shi ◽  
S. X. Wang ◽  
Wim J. van Ooij ◽  
L. M. Wang ◽  
Jiangang Zhao ◽  
...  

2002 ◽  
Vol 17 (10) ◽  
pp. 2555-2560 ◽  
Author(s):  
Donglu Shi ◽  
Peng He ◽  
Jie Lian ◽  
Lumin Wang ◽  
Wim J. van Ooij

Acrylic acid polymer thin films were deposited on the surfaces of nanoparticles of ZnO using a plasma polymerization treatment. The average size of nanoparticles was on the order of 50 nm in irregular shapes. High-resolution transmission electron microscopy (HRTEM) experiments showed that an extremely thin film of the acrylic acid layer (15 nm) was uniformly deposited on the surfaces of the nanoparticles. The HRTEM results were confirmed by time-of-flight secondary ion mass spectroscopy. The effect of plasma power on the polyacrylic thin film was studied by Fourier transform infrared experiments. The deposition mechanisms and the effects of plasma treatment parameters are discussed.


RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28432-28438 ◽  
Author(s):  
Heejin Lim ◽  
Sun Young Lee ◽  
Dae Won Moon ◽  
Jae Young Kim

Cell preparation methods that combine a single-layer graphene cover with air-plasma treatment for improvement of ToF-SIMS imaging.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


1992 ◽  
Vol 262 ◽  
Author(s):  
J.W. Honeycutt ◽  
J. Ravi ◽  
G. A. Rozgonyi

ABSTRACTThe effects of Ti and Co silicidation on P+ ion implantation damage in Si have been investigated. After silicidation of unannealed 40 keV, 2×1015 cm-2 P+ implanted junctions by rapid thermal annealing at 900°C for 10–300 seconds, secondary ion mass spectrometry depth profiles of phosphorus in suicided and non-silicided junctions were compared. While non-silicided and TiSi2 suicided junctions exhibited equal amounts of transient enhanced diffusion behavior, the junction depths under COSi2 were significantly shallower. End-of-range interstitial dislocation loops in the same suicided and non-silicided junctions were studied by planview transmission electron microscopy. The loops were found to be stable after 900°C, 5 minute annealing in non-silicided material, and their formation was only slightly effected by TiSi2 or COSi2 silicidation. However, enhanced dissolution of the loops was observed under both TiSi2 and COSi2, with essentially complete removal of the defects under COSi2 after 5 minutes at 900°C. The observed diffusion and defect behavior strongly suggest that implantation damage induced excess interstitial concentrations are significantly reduced by the formation and presence of COSi2, and to a lesser extent by TiSi2. The observed time-dependent defect removal under the suicide films suggests that vacancy injection and/or interstitial absorption by the suicide film continues long after the suicide chemical reaction is complete.


Sign in / Sign up

Export Citation Format

Share Document