Creep Studies of Monolithic Phases in Nb-Silicide Based In-Situ Composites

2000 ◽  
Vol 646 ◽  
Author(s):  
B.P. Bewlay ◽  
C.L. Briant ◽  
E.T. Sylven ◽  
M.R. Jackson ◽  
G. Xiao

ABSTRACTNb-silicide composites combine a ductile Nb-based solid solution with high-strength silicides, and they show great promise for aircraft engine applications. Previous work has shown that the silicide composition has an important effect on the creep rate. If the Nb:(Hf+Ti) ratio is reduced below ∼1.5, the creep rate increases significantly. This observation could be related to the type of silicide present in the material. To understand the effect of each phase on the composite creep resistance, the creep rates of selected monolithic phases were determined. To pursue this goal, monolithic alloys with compositions similar to the Nb-based solid solution and to the silicide phases, Laves, and T2 phases, were prepared. The creep rates were measured under compression at 1100 and 1200°C. The stress sensitivities of the creep rates of the monolithic phases were also determined. These results allow quantification of the load bearing capability of the individual phases in the Nb-silicide based in-situ composites.

2002 ◽  
Vol 753 ◽  
Author(s):  
B. P. Bewlay ◽  
C. L. Briant ◽  
E. T. Sylven ◽  
M. R. Jackson

ABSTRACTNb-silicide based in-situ composites combine a ductile Nb-based solid solution with high-strength silicides, and they show great promise for aircraft engine applications. The Nb-silicide controls the high-temperature creep behavior of the composite. Previous work has shown that the silicide composition has an important effect on the creep rate, with particular attention on the role of Ti and Hf additions. The aim of the present study is to understand the effects of the substitutional elements on the stability of the silicide phase, ordering in the crystal lattice, including the hP16-tI32 transition, and the creep behavior of the monolithic phases. To pursue this goal monolithic alloys with a range of compositions were prepared and the creep rates were measured at temperatures of 1100–1350°C. The stress sensitivities of the creep rates of the monolithic phases were also determined.


2004 ◽  
Vol 842 ◽  
Author(s):  
Laurent Cretegny ◽  
Bernard P. Bewlay ◽  
Ann M. Ritter ◽  
Melvin R. Jackson

ABSTRACTNb-silicide based in-situ composites consist of a ductile Nb-based solid solution with high-strength silicides, and they show excellent promise for aircraft engine applications. The Nb-silicide controls the high-temperature tensile behavior of the composite, and the Nb solid solution controls the low and intermediate temperature capability. The aim of the present study was to understand the effects of substitutional elements on the room temperature tensile behavior and identify the principal microstructural features contributing to strengthening mechanisms.


Author(s):  
J.A. Sutlif ◽  
B.P. Bewlay ◽  
K.M. Chang ◽  
M.R. Jackson

New materials for high temperature aircraft engine components should have a good combination of low density and high strength at temperatures as high as 1300-1500°C. This will probably require the use of composite materials. In-situ composites, or directionally solidified eutectics, are good candidates for this demanding application and have major advantages over alternative synthetic composites, such as MoSi2-SiC or carbon-carbon composites. The fabrication of components from eutectic castings is simpler and eutectic alloys offer some intrinsic microstructural stability with no reinforcement-matrix interface reactions at high temperatures. We are investigating the Cr-Si, Nb-Si and V-Si eutectic systems as potential high temperature in-situ composites. In this paper, we present results on the microstructure and crystallography of the Cr-Cr3Si eutectic which has a eutectic composition of ∼15 at% Si and a melting temperature of ∼1705 °C.


2012 ◽  
Vol 1516 ◽  
pp. 255-260 ◽  
Author(s):  
G. Zhang ◽  
L. Hu ◽  
W. Hu ◽  
G. Gottstein ◽  
S. Bogner ◽  
...  

ABSTRACTMo fiber reinforced NiAl in-situ composites with a nominal composition Ni-43.8Al-9.5Mo (at.%) were produced by specially controlled directional solidification (DS) using a laboratory-scale Bridgman furnace equipped with a liquid metal cooling (LMC) device. In these composites, single crystalline Mo fibers were precipitated out through eutectic reaction and aligned parallel to the growth direction of the ingot. Mechanical properties, i.e. the creep resistance at high temperatures (HT, between 900 °C and 1200 °C) and the fracture toughness at room temperature (RT) of in-situ NiAl-Mo composites, were characterized by tensile creep (along the growth direction) and flexure (four-point bending, vertical to the growth direction) tests, respectively. In the current study, a steady creep rate of 10-6s-1 at 1100 °C under an initial applied tensile stress of 150MPa was measured. The flexure tests sustained a fracture toughness of 14.5 MPa·m1/2at room temperature. Compared to binary NiAl and other NiAl alloys, these properties showed a remarkably improvement in creep resistance at HT and fracture toughness at RT that makes this composite a potential candidate material for structural application at the temperatures above 1000 °C. The mechanisms responsible for the improvement of the mechanical properties in NiAl-Mo in-situ composites were discussed based on the investigation results.


2020 ◽  
Vol 51 (12) ◽  
pp. 6195-6206 ◽  
Author(s):  
S. Giese ◽  
A. Bezold ◽  
M. Pröbstle ◽  
A. Heckl ◽  
S. Neumeier ◽  
...  

AbstractThe creep resistance of single-crystalline Ni-base superalloys at elevated temperatures depends among others on solid solution strengthening of the γ-matrix. To study the influence of various solid solution strengtheners on the mechanical properties, a series of Ni-base superalloys with the same content of different alloying elements (Ir, Mo, Re, Rh, Ru, W) or element combinations (MoW, ReMo, ReW) was investigated. Nanoindentation measurements were performed to correlate the partitioning behavior of the solid solution strengtheners with the hardness of the individual phases. The lowest γ′/γ-hardness ratio was observed for the Re-containing alloy with the strongest partitioning of Re to the γ-matrix. As a result of the creep experiments in the high-temperature/low-stress regime (1373 K (1100 °C)/140 MPa), it can be concluded that solid solution hardening in the γ-phase plays an essential role. The stronger the partitioning to the γ-phase and the lower the interdiffusion coefficient of the alloying element, the better the creep resistance. Therefore, the best creep behavior is found for alloys containing high contents of slow-diffusing elements that partition preferably to the γ-phase, particularly Re followed by W and Mo.


1996 ◽  
Vol 11 (12) ◽  
pp. 2968-2970 ◽  
Author(s):  
J. T. Li ◽  
W. S. Liu ◽  
Y. L. Xia ◽  
C. C. Ge

The feasibility of synthesizing silicon nitride-silicon carbide-titanium carbonitride composites by combustion reactions is demonstrated. With titanium carbonitride taken to be an ideal solid solution, its composition is determined as TiC0.36N0.64. Thermodynamic analysis supports the experimental results.


2015 ◽  
Vol 15 (1) ◽  
pp. 21-24 ◽  
Author(s):  
M. Kawalec ◽  
M. Górny ◽  
G. Sikora

Abstract A eutectic reaction is a basic liquid-solid transformation, which can be used in the fabrication of high-strength in situ composites. In this study an attempt was made to ensure directional solidification of Fe-C-V alloy with hypereutectic microstructure. In this alloy, the crystallisation of regular fibrous eutectic and primary carbides with the shape of non-faceted dendrites takes place. According to the data given in technical literature, this type of eutectic is suitable for the fabrication of in-situ composites, owing to the fact that a flat solidification front is formed accompanied by the presence of two phases, where one of the phases can crystallise in the form of elongated fibres. In the present study an attempt was also made to produce directionally solidifying vanadium eutectic using an apparatus with a very high temperature gradient amounting to 380 W/cm at a rate of 3 mm/h. Alloy microstructure was examined in both the initial state and after directional solidification. It was demonstrated that the resulting microstructure is of a non-homogeneous character, and the process of directional solidification leads to an oriented arrangement of both the eutectic fibres and primary carbides.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Sharvan Kumar ◽  
Padam Jain ◽  
Seong Woong Kim ◽  
Frank Stein ◽  
Martin Palm

AbstractThe microstructure in a Co-rich, Co-15 at.% Nb alloy was characterized in the as-cast condition. A predominantly lamellar eutectic morphology composed of a Co-Nb solid solution and the C15 Laves phase NbCo2 was confirmed by transmission electron microscopy. The C15 phase was heavily twinned, with only one variant of twins being present in the individual lamella, while the Co solid solution had the face centered cubic structure. In-situ heating to 600°C in the microscope confirmed the decomposition of the metastable Laves phase into a fine equiaxed, ˜10-20 nm grain size microstructure, and the product phase is the monoclinic Nb2Co7. The individual grains appear faulted. The matrix solid solution retained the fcc structure and no change in structure was observed on cooling to room temperature. Heating to temperatures as high as 1130°C leads to rapid grain growth in the Nb2Co7 phase, and the nucleation and growth of a few new grains within the original grains; however, the reverse peritectoid transformation previously reported, was not observed.


1998 ◽  
Vol 552 ◽  
Author(s):  
B. P. Bewlay ◽  
P. W. Whiting ◽  
A. W. Davis ◽  
C. L. Briant

ABSTRACTThis paper will discuss the relationship between microstructure and creep behavior in hightemperature niobium-silicide based in-situ composites. The creep behavior of composites generated from binary Nb-Si alloys, and higher order alloys containing Mo, Hf and Ti additions, will be described. In-situ composites were tested in compression at temperatures up to 1200°C and stress levels in the range 70 to 280MPa. It was found that the Hf concentration can be increased to 7.5 with little increase in creep rate, over that for the binary Nb3Si-Nb composite, but at higher concentrations the creep rate is increased at stress levels higher than 21OMPa. At stresses less than 21OMPa the Ti concentration can be increased to 21 without a detrimental effect on creep performance, but at higher concentrations there is a substantial increase in the creep rate.


Author(s):  
Narendra Kumar ◽  
Gaurav Gautam ◽  
Rakesh Kumar Gautam ◽  
Anita Mohan ◽  
Sunil Mohan

In the present study, in situ reaction technique has been employed to prepare AA5052 matrix composites reinforced with different vol. % of ZrB2 particles (i.e., 0, 4.5, and 9 vol. %). Composites have been characterized by X-ray diffraction (XRD) to confirm the in situ formation of ZrB2 particles in the matrix. Optical Microscopy (OM) studies reveal the refinement of aluminum-rich phase due to the presence of ZrB2 particles. Scanning electron microscopy (SEM) studies reveal size and distribution of ZrB2 particles while transmission electron microscopy (TEM) reveals the presence of dislocations in the matrix around ZrB2 particles. Hardness and tensile testing of composites have been carried out at room temperature to evaluate the mechanical properties. The results reveal the improvement in hardness and strength with increased amount of ZrB2 particles. Strength of AA5052/ZrB2 in situ composites has been analyzed by various strengthening mechanism models. The analysis revealed that Orowan and Solid solution strengthening mechanisms are the predominant mechanism for high strength composites. Theoretical yield strength is about 6–10% higher than the experimental values due to clustering tendency of ZrB2 particles.


Sign in / Sign up

Export Citation Format

Share Document