Release of Radionuclides from Spent Fuel Under Repository Conditions: Mathematical Modelling and Preliminary Results

2000 ◽  
Vol 663 ◽  
Author(s):  
Esther Cera ◽  
Juan Merino ◽  
Jordi Bruno

ABSTRACTIn the framework of the Enresa 2000 PA exercise and as a continuation of the developments made during SR 97, we have developed a conceptual and numerical model to calculate the release of radionuclides from spent fuel under repository conditions. The model includes both thermodynamic and kinetic considerations. Hence, although certain radionuclides are solubility controlled, for other radionuclides their release is governed by kinetic processes such as radiolytically promoted oxidative dissolution of the matrix and the associated water turnover inthe gap. The fluxes of selected radionuclides are calculated as an indication of the relative importance of the various processes considered to define source term concentrations in the performance assessment of the spent fuel repository.

1993 ◽  
Vol 333 ◽  
Author(s):  
P. A. Finn ◽  
J. K. Bates ◽  
J. C. Hoh ◽  
J. W. Emery ◽  
L D. Hafenrichter ◽  
...  

ABSTRACTPreliminary results for the composition of the leachate from unsaturated tests at 90°C with spent fuel for two successive periods of ~60 days each with pretreated J-13 groundwater are reported. The pH of the leachate solutions ranged from 4 to 7. The americium concentration was 104 to 105 greater than that reported for saturated spent fuel tests in which the leachate pH was 8. The major fraction of material in the leachate was present as colloids containing both americium and curium. The presence of actinides in a form not currently directly included in repository radionuclide transport models provides information that can be used in spent fuel reaction modeling, the performance assessment of the repository and the design of the engineering barrier system.


1999 ◽  
Vol 556 ◽  
Author(s):  
William M. Murphy ◽  
Richard B. Codell

AbstractPerformance assessment calculations for the proposed high level radioactive waste repository at Yucca Mountain, Nevada, were conducted using the Nuclear Regulatory Commission Total-System Performance Assessment (TPA 3.2) code to test conceptual models and parameter values for the source term based on data from the Peña Blanca, Mexico, natural analog site and based on a model for coprecipitation and solubility of secondary schoepite. In previous studies the value for the maximum constant oxidative alteration rate of uraninite at the Nopal I uranium body at Peña Blanca was estimated. Scaling this rate to the mass of uranium for the proposed Yucca Mountain repository yields an oxidative alteration rate of 22 kg yr−1, which was assumed to be an upper limit on the release rate from the proposed repository. A second model was developed assuming releases of radionuclides are based on the solubility of secondary schoepite as a function of temperature and solution chemistry. Releases of uranium are given by the product of uranium concentrations at equilibrium with schoepite and the flow of water through the waste packages. For both models, radionuclides other than uranium and those in the cladding and gap fraction were modeled to be released at a rate proportional to the uranium release rate, with additional elemental solubility limits applied. Performance assessment results using the Peña Blanca oxidation rate and schoepite solubility models for Yucca Mountain were compared to the TPA 3.2 base case model, in which release was based on laboratory studies of spent fuel dissolution, cladding and gap release, and solubility limits. Doses calculated using the release rate based on natural analog data and the schoepite solubility models were smaller than doses generated using the base case model. These results provide a degree of confidence in safety predictions using the base case model and an indication of how conservatism in the base case model may be reduced in future analyses.


1997 ◽  
Vol 506 ◽  
Author(s):  
B. Grambow

ABSTRACTwith respect to the state of validation for source term development. Consequences of the various mechanism on mass half lives of the waste forms are calculated with analytical equations. For glass the largest uncertainty stems from the yet unclear dissolution mechanism under silica saturated conditions. Source terms based on silica solubility coupled to Si-mass transfer are probably neither conservative nor realistic. For spent fuel the largest uncertainty is in the extrapolation of radiolytic fuel oxidation for long periods of time. Considering the uncertainties involved, reaction rates cannot yet be extrapolated reliably to values much lower than the lowest reliable experimental measurements.


2003 ◽  
Vol 807 ◽  
Author(s):  
C. Cachoir ◽  
K. Lemmens

ABSTRACTTo support the performance assessment (PA) calculations for the possible final disposal of spent fuel in the Boom Clay, leach experiments are performed with α-doped UO2 in clay media, simulating various near field ages. The experiments allow to measure the dissolution rate of the UO2 and to determine the assumed relationship between dissolution rate and α-activity. Tests are performed at six different α-activities, simulating various fuel ages, at 25–30°C, for durations ranging from 90 to 720 days, in a glove box with Ar/0.4%CO2 atmosphere. The solutions and solids are analyzed for U isotopes and 238Pu by radiochemical measurement and by ICP-MS. The dissolution rates of the α-doped UO2 are presented for different durations. The resulting corrosion rate is around 300 μgU.m−2.d−1. This is up to 100 times higher than found for similar conditions in the literature. In the presence of clay, there appears to be no correlation between the α-activity and the corrosion rate of the α-doped UO2.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2710
Author(s):  
Shivam Barwey ◽  
Venkat Raman

High-fidelity simulations of turbulent flames are computationally expensive when using detailed chemical kinetics. For practical fuels and flow configurations, chemical kinetics can account for the vast majority of the computational time due to the highly non-linear nature of multi-step chemistry mechanisms and the inherent stiffness of combustion chemistry. While reducing this cost has been a key focus area in combustion modeling, the recent growth in graphics processing units (GPUs) that offer very fast arithmetic processing, combined with the development of highly optimized libraries for artificial neural networks used in machine learning, provides a unique pathway for acceleration. The goal of this paper is to recast Arrhenius kinetics as a neural network using matrix-based formulations. Unlike ANNs that rely on data, this formulation does not require training and exactly represents the chemistry mechanism. More specifically, connections between the exact matrix equations for kinetics and traditional artificial neural network layers are used to enable the usage of GPU-optimized linear algebra libraries without the need for modeling. Regarding GPU performance, speedup and saturation behaviors are assessed for several chemical mechanisms of varying complexity. The performance analysis is based on trends for absolute compute times and throughput for the various arithmetic operations encountered during the source term computation. The goals are ultimately to provide insights into how the source term calculations scale with the reaction mechanism complexity, which types of reactions benefit the GPU formulations most, and how to exploit the matrix-based formulations to provide optimal speedup for large mechanisms by using sparsity properties. Overall, the GPU performance for the species source term evaluations reveals many informative trends with regards to the effect of cell number on device saturation and speedup. Most importantly, it is shown that the matrix-based method enables highly efficient GPU performance across the board, achieving near-peak performance in saturated regimes.


2016 ◽  
Vol 23 (1) ◽  
pp. 31-54
Author(s):  
Masanobu NAGATA ◽  
Takahiro CHIKAZAWA ◽  
Kuniaki AKAHORI ◽  
Akira KITAMURA ◽  
Yukio TACHI

1986 ◽  
Vol 84 ◽  
Author(s):  
V. M. Oversby

AbstractPerformance assessment calculations are required for high level waste repositories for a period of 10,000 years under NRC and EPA regulations. In addition, the Siting Guidelines (IOCFR960) require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. In order to perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. While bounding calculations might be sufficient to show compliance with the requirements of IOCFR60 and 40CFRI91, the site comparison for 100,000 years will need to be based on expected performance under site specific conditions. The only case where detailed knowledge of waste form characteristics in the repository would not be needed would be where radionuclide travel times to the accessible environment can be shown to exceed 100,000 years. This paper will review the factors that affect the release of radionuclides from spemt fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed in order to support the performance assessment calculations.


1943 ◽  
Vol 26 (5) ◽  
pp. 485-494 ◽  
Author(s):  
C. P. Swanson

1. Through use of the pollen tube technique it has been possible to study the sensitivity of prophase stages to x-rays and ultraviolet, and to correlate the varying sensitivity with changes in the generative nucleus of Tradescantia. 2. Sensitivity to ultraviolet decreases from the 2 hour stage until at 11 hours after germination there is no further production of breaks. The 0 and 1 hour stages show a decreased sensitivity over the 2 hour stage but it has been suggested that this is not due to a decreased sensitivity but to shielding by the pollen wall. 3. Sensitivity to x-rays rises to a peak at the 4 hour stage, but then subsides until no breaks are realized (at a dose of 370.8 r) after the 10 hour stage. In this respect the effects of x-rays and ultraviolet are similar. Each type of x-ray break shows its own individual trend. 4. Correlation of x-ray breaks with changes in the generative nucleus indicates that the important events determining the sensitivity of the chromosomes to breakage are the uptake of water at the time of germination and the movement involved in spiralization. The total absence of breaks after the 11 hour stage is not understood. 5. The changing sensitivity to ultraviolet may depend on any one or all of three factors: (a) the nucleic acid cycle, (b) changes in the matrix, and (c) the number of subdivisions in the chromosome. These are discussed although their relative importance is not known.


Sign in / Sign up

Export Citation Format

Share Document