Magnetization reversal and magnetic anisotropy of Fe, Ni and Co nanowires in nanoporous alumina membranes

2001 ◽  
Vol 674 ◽  
Author(s):  
M. Kröll ◽  
L. J. de Jongh ◽  
F. Luis ◽  
P. Paulus ◽  
G. Schmid

ABSTRACTThe magnetization reversal and magnetic anisotropy of Fe, Ni and Co nanowires is studied at low temperatures. All nanowires show a strong shape anisotropy with the easy axis being parallel to the long axis of the wires. Co nanowires additionally show a temperature dependent magnetocrystalline anisotropy along the hexagonal c-axis, which is directed nearly perpendicular to the long axis of the wires, as is confirmed by X-Ray diffraction measurements [1] and reported by Strijkers et al. who performed NMR measurements on samples prepared in a similar way [2]. Therefore, at low temperatures and for large wire diameters a competition between magnetocrystalline and shape anisotropies can be observed. Co wires with a small diameter, however, do not show a significant magnetocrystalline anisotropy. Fcc-Co, which is only known as a high-temperature Co modification and which does not have a large magnetocrystalline anisotropy constant, becomes the predominant Co modification here [1,3]. Investigations on the size dependence of the switching field for Fe and Ni nanowires provide information about the magnetization reversal process, which takes place via a nucleation of small magnetic domains probably at the end of the wires, and subsequent propagation of the domain wall along the wire.

2010 ◽  
Vol 67 ◽  
pp. 108-112
Author(s):  
Giancarlo Bottoni

In Ba ferrite particles magnetocrystalline and shape anisotropies are contemporarily present and conflicting. The strength and evolution of the two anisotropies are studied, through the dependence of the anisotropy constants on temperature. While in pure Ba ferrite particles the anisotropy is uniaxial at all temperatures, since the magnetocrystalline anisotropy clearly prevails on shape anisotropy, in particles modified for employment in recording media the two anisotropies are comparable and at low temperatures the shape anisotropy result stronger than the crystalline anisotropy. Besides the irregular shape of the particles introduces further preferred directions for the magnetization. The Co/Ti-doped particles show a multiple axes anisotropy. The macroscopic magnetic properties are found in relationship with the evolution of the anisotropy. Also the influence that the presence of such multiple anisotropy has on the magnetization switching and on the thermal stability of the magnetization of the Ba ferrite particles is analyzed.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Youwen Yang ◽  
Yanbiao Chen ◽  
Yucheng Wu ◽  
Xiangying Chen ◽  
Mingguang Kong

The Co nanowires with different diameters were prepared by pulsed electrodeposition into anodic alumina membranes oxide templates. The micrographs and crystal structures of nanowires were studied by FE-SEM, TEM, and XRD. Due to their cylindrical shape, the nanowires exhibit perpendicular anisotropy. The coercivity and loop squareness (Mr/Ms) of Co nanowires depend strongly on the diameter. Both coercivity and Mr/Ms decrease with increasing wire diameter. The behavior of the nanowires is explained briefly in terms of localized magnetization reversal.


2015 ◽  
Vol 3 (18) ◽  
pp. 4688-4697 ◽  
Author(s):  
J. García ◽  
V. M. Prida ◽  
L. G. Vivas ◽  
B. Hernando ◽  
E. D. Barriga-Castro ◽  
...  

Arrays of Co(100−x)Cu(x) (0 ≤ x ≤ 27) nanowires with 45 nm of diameter and 18 μm in length, have been potentiostatically electrodeposited into the hexagonally self-assembled nanopores of anodic alumina membranes.


2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


AIP Advances ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 015113
Author(s):  
Enrique Navarro ◽  
María Alonso ◽  
Ana Ruiz ◽  
Unai Urdiroz ◽  
Marta Sánchez-Agudo ◽  
...  

2001 ◽  
Vol 674 ◽  
Author(s):  
M.I. Rosales ◽  
H. Montiel ◽  
R. Valenzuela

ABSTRACTAn investigation of the frequency behavior of polycrystalline ferrites is presented. It is shown that the low frequency dispersion (f < 10 MHz) of permeability is associated with the bulging of pinned domain walls, and has a mixed resonance-relaxation character, closer to the latter. It is also shown that there is a linear relationship between the magnetocrystalline anisotropy constant, K1, and the relaxation frequency. The slope of this correlation depends on the grain size. Such a relationship could allow the determination of this basic parameter from polycrystalline samples.


2006 ◽  
Vol 512 ◽  
pp. 195-200 ◽  
Author(s):  
Nariaki Okamoto ◽  
Takashi Fukuda ◽  
Tomoyuki Kakeshita ◽  
Tetsuya Takeuchi

Ni2MnGa alloy with 10M martensite exhibits rearrangement of martensite variants (RMV) by magnetic field, but Ni2.14Mn0.92Ga0.94 with 2M martensite does not. In order to explain the difference, we measured uniaxial magnetocrystalline anisotropy constant Ku and the stress required for twinning plane movement τreq in these alloys. Concerning the former alloy, the maximum value of magnetic shear stress acting across twinning plane τmag, which is evaluated as |Ku| divided by twinning shear, becomes larger than τr eq. On the other hand, concerning the latter alloy, the maximum of τmag is only one-tenth of τreq at any temperature examined. Obviously, the relation, τmag> τr eq, is satisfied when RMV occurs by magnetic field and vice versa. In this martensite, the large twinning shear of 2M martensite is responsible for small τmag and large τreq.


2012 ◽  
Vol 520 (17) ◽  
pp. 5746-5751 ◽  
Author(s):  
S.J. Zhang ◽  
Jian-Guo Zheng ◽  
Z. Shi ◽  
S.M. Zhou ◽  
L. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document