The Influence of Contact Composition, Pretreatment, and Annealing Gas on the Ohmic Behavior of Ti/Al-Based Ohmic Contacts to n-Al0.4Ga0.6N

2001 ◽  
Vol 680 ◽  
Author(s):  
K. O. Schweitz ◽  
T. G. Pribicko ◽  
S. E. Mohney ◽  
T. F. Isaacs-Smith ◽  
J. Williams ◽  
...  

ABSTRACTAs the group III nitride semiconductor technology matures, an increasing number of devices are being fabricated with high Al fraction AlGaN. In this study, ohmic behavior is achieved using Ti/Al/Pt/Au contacts to n-Al0.4Ga0.6N, which is the highest Al fraction for which ohmic contact formation has been reported. The effect of contact composition, pretreatment, and annealing conditions is studied by 30 s isochronal annealing experiments between 500°C and 1000°C. A specific contact resistance ρC of (5±3) × 10−5 ωcm2 is obtained using Ti(26 nm)/Al(74 nm)/Pt(50 nm)/Au(50 nm) contacts to n-Al0.4Ga0.6N annealed in N2 at 800°C; however, this value is shown to be artificially high because the metal sheet resistance RM is 4 ω/⊏ causing an artifact in the data analysis. All contacts with ρC < 10−3 ωcm2 exhibit a local minimum in ρC after annealing at 800°C. The observed increase in ρC upon annealing at 850°C and 900°C, however, is not an artifact originating from a change in RM. The top Au layer is found to play an active role in forming ohmic contacts with low ρC, since omitting the Au layer yields an increase in ρC of two orders of magnitude after annealing at 800°C. Furthermore, leaving out the Au layer requires an annealing temperature of 700°C to result in linear I-V curves for currents up to 100 µA, as opposed to 500°C when the Au layer is present. The role of Au is further studied in Ti(26 nm)/Al(74 nm)/Ni(50 nm)/Au(50 nm) contacts, where Rutherford backscattering spectroscopy reveals Ga in the metal layer and/or Au buried deeper than the original semiconductor-metal interface, and x-ray diffraction indicates the formation of new phases to happen concurrently with a decrease in ρC of three orders of magnitude.

2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


2020 ◽  
Vol 1004 ◽  
pp. 725-730
Author(s):  
Fabrizio Roccaforte ◽  
Monia Spera ◽  
Salvatore Di Franco ◽  
Raffaella Lo Nigro ◽  
Patrick Fiorenza ◽  
...  

Gallium nitride (GaN) and its AlGaN/GaN heterostructures grown on large area Si substrates are promising systems to fabricate power devices inside the existing Si CMOS lines. For this purpose, however, Au-free metallizations are required to avoid cross contaminations. In this paper, the mechanisms of current transport in Au-free metallization on AlGaN/GaN heterostructures are studied, with a focus on non-recessed Ti/Al/Ti Ohmic contacts. In particular, an Ohmic behavior of Ti/Al/Ti stacks was observed after an annealing at moderate temperature (600°C). The values of the specific contact resistance ρc decreased from 1.6×104 Ω.cm2 to 7×105 Ω.cm2 with increasing the annealing time from 60 to 180s. The temperature dependence of ρc indicated that the current flow is ruled by a thermionic field emission (TFE) mechanism, with barrier height values of 0.58 eV and 0.52 eV, respectively. Finally, preliminary results on the forward and reverse bias characterization of Au-free tungsten carbide (WC) Schottky contacts are presented. This contact exhibited a barrier height value of 0.82 eV.


2012 ◽  
Vol 717-720 ◽  
pp. 825-828
Author(s):  
Alessia Frazzetto ◽  
Fabrizio Roccaforte ◽  
Filippo Giannazzo ◽  
R. Lo Nigro ◽  
M. Saggio ◽  
...  

This paper reports on the effects of different post-implantation annealings on the electrical properties of interfaces to p-type implanted 4H-SiC. The morphology of p-type implanted 4H-SiC was controlled using a capping layer during post-implantation activation annealing of the dopant. Indeed, the surface roughness of Al-implanted regions strongly depends on the use of the protective capping layer during the annealing. However, while the different morphological conditions do not affect the macroscopical electrical properties of the implanted SiC (such as the sheet resistance), they led to an improvement of the morphology and of the specific contact resistance of Ti/Al Ohmic contacts formed on the implanted regions. These electrical and morphologic improvements were associated with a lowering of Schottky barrier height. Preliminary results showed that the different activation annealing conditions of p-type implanted SiC can affect also the electrical parameters (like threshold voltage and mobility) of lateral MOSFETs.


1993 ◽  
Vol 320 ◽  
Author(s):  
Hsing-Kuen Liou ◽  
Edward S. Yang ◽  
K. N. Tu

ABSTRACTNonalloyed shallow ohmic contacts to n-Si have been fabricated by using an 80 Å thick strained Si0.5Ge0.5 buffer layer grown by molecular beam epitaxy. X-ray photoelectron spectroscopy was employed to investigate the Si 2p and Ge 3d core level binding energies of the strained and the relaxed Si0.5Ge0.5 and to determine their relative Fermi level positions. It was found that the surfaces of strained Si0.5Ge0.5 exhibit pinning very close to the conduction band. Rutherford backscattering and Auger depth profiling were employed to determine the contact reactions using Ti, W or Pt as contact metals. In the case of Pt, a 500 Å W diffusion barrier can protect the ohmic behavior up to 550 °C for 30 min. The specific contact resistance of the Pt/W/Si0.5Ge0.5/n-Si contact extracted from the D-type cross-bridge Kelvin resistor was 3.5x10-5 Ω·cm2.


1994 ◽  
Vol 337 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
H. Barry Harrison

ABSTRACTThis paper briefly reviews the standard Transmission Line Model (TLM) commonly used to measure the specific contact resistance ρc and the sheet resistance Rsk beneath a planar ohmic contact. In the case of an alloyed ohmic contact, a more realistic three layer (Tri-Layer Transmission Line Model (TLTLM)) can be used for the analysis. This model is based on three layers (metal layer, alloyed semiconductor layer and the unalloyed semiconductor layer) and the two interfaces between them. By using appropriate TLTLM parameters, it is possible to calculate the sheet resistance Rsk that has been experimentally derived from the standard TLM. The new TLTLM model predicts that values of Rsk greater and less than Rsh (the unmodified epitaxial layer sheet resistance) are possible in agreement with experimentally reported observations.


1996 ◽  
Vol 449 ◽  
Author(s):  
Guohua Qiu ◽  
Fen Chen ◽  
J. O. Olowolafe ◽  
C. P. Swann ◽  
K. M. Unruh ◽  
...  

ABSTRACTThe interfaces between metals and semiconductors are very crucial to the performance and reliability of solid-state devices. At the moment information on the interfaces between metals and group III-nitride semiconductors are very rare. In this study, linear I-V characteristics of titanium and aluminum to A1xIn1-xN of three different composition (x=0.18, 0.50,0.85) were obtained exhibiting ohmic characteristics. Specific contact resistance of these metals to A1.18In.82N and Al.5In.5N was measured by transmission line measurement. Interdiffusion between the metals and the semiconductors, induced by annealing in N2 ambient, was determined using RBS and thermal stability was evaluated.


2000 ◽  
Vol 640 ◽  
Author(s):  
J. Y. Lin ◽  
S. E. Mohney ◽  
M. Smalley ◽  
J. Crofton ◽  
J. R. Williams ◽  
...  

ABSTRACTThe influence of composition on Al-Ti ohmic contacts to 4H p-SiC was studied. When NA was 7 x 1018 cm−3, contacts with 70 wt.% or more Al became ohmic when annealed at 1000°C for 2 min, whereas when there was 60 wt.% or less Al, the contacts did not become ohmic even when annealed under more severe conditions (longer times and/or higher temperatures). Spiking of the contact metallization always accompanied ohmic behavior and could be correlated with Al-Ti compositions that contain both an Al-rich liquid and solid TiAl3 at 1000°C prior to reaction with SiC or evaporative loss of Al. For the 70 wt.× contacts, a specific contact resistance of 1.5 × 10−4 Ω cm2 was measured along with spiking of the metallization into the SiC with a room-mean-square interfacial roughness of 150 Å and a maximum spiking depth of 1200 Å. Although still a concern, this spiking was less severe than observed for the 90 wt.× composition. A conductive CrB2 cap layer was next demonstrated to retard evaporation of Al during annealing of the Al-Ti contacts with 70 wt.× Al. The cap allowed use of thinner contact layers, reducing the depth of spiking and improving the surface morphology and edge definition of the ohmic contacts, with a one order of magnitude penalty in the specific contact resistance.


1996 ◽  
Vol 448 ◽  
Author(s):  
C.Y. Kim ◽  
W.S. Lee ◽  
H.J. Kwon ◽  
Y.W. Jeong ◽  
J.S. Lee ◽  
...  

AbstractPt embedded ohmic contacts to n+-GaAs (AuGe-800 Å/ Ni-150 Å/Pt-200 Å/Au-500 Å and AuGe-800 Å/Pt-200 Å/Ni-150 Å/Au-500 Å/n+-GaAs) have been developed for the advanced discrete devices and MMIC (monolithic microwave integrated circuit) applications. The specific contact resistance investigated by Transmission Line Method is 1x10-6 Ω cm2. Ohmic contact reliability investigated by thermal storage test at 300 °C under N2 ambient demonstrated nearly the same contact characteristics after 3000 hours. In both systems, X-ray diffraction results and Auger depth profiles show that the good ohmic contact is related to the formation of Au7Ga2, PtAs2, and Ni19Gen12 phases. AuGa compound enhances the creation of Ga vacancies, allowing incorporation of Ge into Ga sites, and PtAs compound is piled up in the middle of AuGa layer to suppress As outdifrusion from GaAs substrate. TEM cross-sectional view indicates that metal/n+-GaAs reaction layer is ∼ 1200 Å beneath GaAs. Surface and interface are very smooth and abrupt in comparison to conventional AuGe/Ni/Au contact.


2019 ◽  
Vol 963 ◽  
pp. 498-501
Author(s):  
Vuong Van Cuong ◽  
Seiji Ishikawa ◽  
Hiroshi Sezaki ◽  
Tomonori Maeda ◽  
Satoshi Yasuno ◽  
...  

Low specific contact resistivity and high-temperature reliability of the Ni (x)/Nb (100-x) (where x = 25, 50, 75 nm) ohmic contact to 4H-SiC were investigated. After the annealing process at 1000°C for 3 min in N2 ambient, the I-V curves indicated that all the contacts exhibited the ohmic behaviors. Based on the transfer length method, the specific contact resistivity of the contacts were extracted. High concentration of Ni was responsible for low specific contact resistance of the Ni (75)/Nb (25)/4H-SiC sample by the formation of Ni2Si compound after the fabrication process. However, this contact lost the ohmic behavior at low temperature of 150°C. Whereas, both Ni (50)/Nb (50)/4H-SiC and Ni (25)/Nb (75)/4H-SiC contacts remained the ohmic behavior for 100-hour aging at 400°C. Two-dimensional X-ray diffraction analyses showed that the presence of carbon agglomeration formed at the interface of the Ni (75)/Nb (25)/4H-SiC contact caused the degradation of this sample when being aged at high temperature environment. Meanwhile, higher concentration of Nb in the Ni (50)/Nb (50)/4H-SiC and Ni (25)/Nb (75)/4H-SiC samples improved the ability to collect the excess carbon atoms and thus enhanced the high temperature reliability of these contacts when operating in high temperature ambient. Considering both low specific contact resistivity and high temperature reliability, the Ni (50)/Nb (50)/4H-SiC contact can be a good candidate for harsh environment applications.


2019 ◽  
Vol 963 ◽  
pp. 485-489
Author(s):  
Monia Spera ◽  
Giuseppe Greco ◽  
Raffaella Lo Nigro ◽  
Salvatore di Franco ◽  
Domenico Corso ◽  
...  

This paper reports on the formation and characterization of Ohmic contacts to n-type and p-type type 3C-SiC layers grown on silicon substrates. In particular, Ohmic contact behavior was obtained either using Ni or Ti/Al/Ni layers annealed at 950°C. The values of the specific contact resistance ρc estimated by means of circular TLM (C-TLM) structures varied in the range ~ 10-3-10-5 Ωcm2, depending on the doping level of the 3C-SiC layer. A structural analysis performed by X-Ray Diffraction (XRD) allowed to identify the main phases formed upon annealing, i.e., Ni2Si and Al3Ni2. The morphology of the reacted contacts depended on that of the underlying substrate. The results can be useful for the development of a variety of devices on the cubic 3C-SiC polytype.


Sign in / Sign up

Export Citation Format

Share Document