Alloying Behavior and Reliabilty of Pt Embedded Metal/n+-GaAs Thin Ohmic Contact System

1996 ◽  
Vol 448 ◽  
Author(s):  
C.Y. Kim ◽  
W.S. Lee ◽  
H.J. Kwon ◽  
Y.W. Jeong ◽  
J.S. Lee ◽  
...  

AbstractPt embedded ohmic contacts to n+-GaAs (AuGe-800 Å/ Ni-150 Å/Pt-200 Å/Au-500 Å and AuGe-800 Å/Pt-200 Å/Ni-150 Å/Au-500 Å/n+-GaAs) have been developed for the advanced discrete devices and MMIC (monolithic microwave integrated circuit) applications. The specific contact resistance investigated by Transmission Line Method is 1x10-6 Ω cm2. Ohmic contact reliability investigated by thermal storage test at 300 °C under N2 ambient demonstrated nearly the same contact characteristics after 3000 hours. In both systems, X-ray diffraction results and Auger depth profiles show that the good ohmic contact is related to the formation of Au7Ga2, PtAs2, and Ni19Gen12 phases. AuGa compound enhances the creation of Ga vacancies, allowing incorporation of Ge into Ga sites, and PtAs compound is piled up in the middle of AuGa layer to suppress As outdifrusion from GaAs substrate. TEM cross-sectional view indicates that metal/n+-GaAs reaction layer is ∼ 1200 Å beneath GaAs. Surface and interface are very smooth and abrupt in comparison to conventional AuGe/Ni/Au contact.

2005 ◽  
Vol 20 (2) ◽  
pp. 456-463 ◽  
Author(s):  
Jiin-Long Yang ◽  
J.S. Chen ◽  
S.J. Chang

The distribution of Au and NiO in NiO/Au ohmic contact on p-type GaN was investigated in this work. Au (5 nm) films were deposited on p-GaN substrates by magnetron sputtering. Some of the Au films were preheated in N2 ambient to agglomerate into semi-connected structure (abbreviated by agg-Au); others were not preheated and remained the continuous (abbreviated by cont-Au). A NiO film (5 nm) was deposited on both types of samples, and all samples were subsequently annealed in N2 ambient at the temperatures ranging from 100 to 500 °C. The surface morphology, phases, and cross-sectional microstructure were investigated by scanning electron microscopy, glancing incident angle x-ray diffraction, and transmission electron microscopy. I-V measurement on the contacts indicates that only the 400 °C annealed NiO/cont-Au/p-GaN sample exhibits ohmic behavior and its specific contact resistance (ρc) is 8.93 × 10−3 Ω cm2. After annealing, Au and NiO contact to GaN individually in the NiO/agg-Au/p-GaN system while the Au and NiO layers become tangled in the NiO/cont-Au/p-GaN system. As a result, the highly tangled NiO-Au structure shall be the key to achieve the ohmic behavior for NiO/cont-Au/p-GaN system.


2018 ◽  
Vol 924 ◽  
pp. 405-408
Author(s):  
Xue Chao Liu ◽  
Shi Yi Zhuo ◽  
Wei Bin Chen ◽  
Chong Chong Dai ◽  
Er Wei Shi

A sandwich structure of Ni/Nb/4H-SiC was prepared and annealed at different temperature from 750°C to 1050°C. The electrical property and crystalline structure of Ni/Nb electrode was characterized by transmission line method and X-ray diffraction. It was found that the annealing temperature and the thickness of Ni/Nb layer played an important role in obtaining Ohmic contact. A low specific contact resistance of 1.1×10-5Ω·cm2was obtained when the Ni(50nm)/Nb(50nm) electrode was annealed at 1050°C. The Ohmic contact mechanism of Ni/Nb/4H-SiC was proposed.


2000 ◽  
Vol 640 ◽  
Author(s):  
Xaiobin Wang ◽  
Stanislav Soloviev ◽  
Ying Gao ◽  
G. Straty ◽  
Tangali Sudarshan ◽  
...  

ABSTRACTOhmic contacts to p-type SiC were fabricated by depositing Al/Ni and Al/Ti followed by high temperature annealing. A p-type layer was fabricated by Al or B diffusion from vapor phase into both p-type and n-type substrates. The thickness of the diffused layer was about 0.1–0.2 μm with surface carrier concentration of about 1.0×1019cm−3. Metal contacts to a p-type substrate with a background doping concentration of 1.2×1018cm−3, without a diffusion layer, were also formed. The values of specific contact resistance obtained by Circular Transmission Line Method (CTLM) and Transfer Length Method (TLM) for the n-type substrate, and by Cox & Strack method for p-type substrate, respectively, varied from 1.3×10−4Ωcm2 to 8.8×10−3 Ωcm2. The results indicate that the specific contact resistance could be significantly reduced by creating a highly doped diffused surface layer.


2006 ◽  
Vol 911 ◽  
Author(s):  
Kirk Hofeling ◽  
Loren Rieth ◽  
Florian Solzbacher

AbstractTiW(40 nm)/TiWN(80 nm)/Pt(500nm) was investigated as a new high-temperature compatible contact stack to 3C-SiC for harsh environment applications. Performance of TiW/TiWN/Pt contacts deposited on unintentionally doped (8.85×1018 cm-3) 3C-SiC grown by LPCVD to a thickness of ~1μm on (100) Si are reported. The linear transmission line method was used to determine specific contact resistance (ρc) at room temperature and for long-term tests at 300 °C. As deposited contacts were Ohmic with a ρc range of 1×10-4 to 1×10-3 cm2. These contacts were annealed for five minutes in forming gas (8% H2 92% Ar), at temperatures from 450 to 950 °C and all retained Ohmic character. Annealing samples at 450, 550 and 950 °C decreased ρc while anneling between 650 and 850 °C generally increased ρc.Auger Electron Spectroscopy (AES) analysis was performed on a sample annealed at 750 °C. The as-received surface was composed of Si and O; after a brief sputter etch a characteristic Pt peak became visible and the O peak decreased substantially. Depth profiles detected Si throughout the Pt capping layer but not in the TiW layers. We suspect that Si diffuses from the SiC substrate into the Pt capping layer and surface Si also reacts with O2 to from an oxide. These reactions, in combination with incomplete SiC/TiW interface reactions, are suspected to cause the increase of ρc for samples annealed between 650 and 850 °C. Annealing at 950 °C gave the lowest contact resistance of 2.3×10-5. Long-term testing at 300 °C for 190 hours, in atmosphere, was performed on contacts annealed at 450 °C. When heated, the contacts initial ρc of 2.1×10-4 cm2 increased to ~4×10-3 cm2 which remained stable for the test duration. After long-term testing the sample ρc measured at room temperature decreased to 9.8×10-5 cm2.


1993 ◽  
Vol 300 ◽  
Author(s):  
A. Piotrowska ◽  
E. Kaminska ◽  
M. Guziewicz ◽  
S. Kwiatkowski ◽  
A. Turos

ABSTRACTThe formation of ohmic contacts to p-GaAs based on Au-Zn system comprising a TiN diffusion barrier has been investigated using 2 MeV He+ RBS and the specific contact resistance measurements. It has been proved that TiN films deposited by reactive RF bias magnetron sputtering serves two purposes. First it suppresses the arsenic evaporation and thus confines the reaction between AuZn and GaAs. Second, it prevents intermixing between p-GaAs/Au(Zn) ohmic contact and an overlayer of Au.


2008 ◽  
Vol 1108 ◽  
Author(s):  
Indra Chary ◽  
Boris Borisov ◽  
Vladimir Kuryatkov ◽  
Yuriy Kudryavtsev ◽  
R Asomoza ◽  
...  

AbstractWe report the influence of surface treatment, annealing temperature and metal bilayer thickness on the specific contact resistance (ρc) of Au/Ni ohmic contacts to p-GaN and p-AlGaN. Ohmic contact on p-GaN with a hole concentration of 6.5 x 1017 cm-3, shows the lowest ρc of ˜9.2 x 10-6 Ω cm2, when GaN was treated in HCl:H2O (3:1) solution before metal deposition and annealed at 500°C for 10 minutes in 90% N2 and 0% O2 atmosphere. Similar procedure applied on p-AlxGa1-xN (x = 5-7%), with a hole concentration of 2.3 x 1017 cm-3, yields a ρc of 1.8 x 10-4 Ω cm2. An increase is observed in ρc when Mg doping exceeds 4 x 1019 cm-3 in both p-GaN and p-AlGaN. This is attributed to Mg self compensation. This increase is more pronounced in AlGaN which we attribute to the presence of residual native aluminum oxides.


2001 ◽  
Vol 693 ◽  
Author(s):  
Th. Gessmann ◽  
Y.-L. Li ◽  
J. W. Graff ◽  
E. F. Schubert ◽  
J. K. Sheu

AbstractA novel type of low-resistance ohmic contacts is demonstrated utilizing polarization-induced electric fields in thin p-type InGaN layers on p-type GaN. An increase of the hole tunneling probability through the barrier and a concomitant significant decrease of the specific contact resistance can be attributed to a reduction of the tunneling barrier width in the InGaN capping layers due to the polarization-induced electric fields. The specific contact resistance of Ni (10 nm) / Au (30 nm) contacts deposited on the InGaN capping layers was determined by the transmission line method. Specific contact resistances of 1.2 × 10-2 Ω cm2 and 6 × 10-3 & cm2 were obtained for capping layer thicknesses of 20 nm and 2 nm, respectively.


1997 ◽  
Vol 482 ◽  
Author(s):  
Ja-Soon Jang ◽  
Hyo-Gun Kim ◽  
Kyung-Hyun Park ◽  
Chang-Sub Um ◽  
Il-Ki Han ◽  
...  

AbstractWe report a new Ni/Pt/Au (20/30/80 nm) metallization scheme to achieve a low ohmic contacts to p-type GaN with a carrier concentration of 9.4 × 1016 cm-3. A Mg-doped GaN layer (0.5 μm) was grown on (0001) sapphire substrate by metalorganic chemical vapor deposition (MOCVD). All metal thin films were deposited on the p-GaN layer in an electron-beam evaporation system. Samples were annealed by a rapid thermal annealing (RTA) process at a range of temperatures from 300 °C to 850 °C under a flowing Ar atmosphere. A circulartransmission line model (c-TLM) was employed to calculate the specific contact resistance, and current-voltage (I-V) data were measured with HP4155A. The Ni/Pt/Au contacts without the annealing process showed nearly rectifying characteristics. The ohmic contacts were formed on the samples annealed at 500 °C for 30 sec and the I-V data showed a linear behavior. The specific contact resistance was 2.1 × 10-2 Ωcm2. However with increasing the annealing temperature above 600 °C, ohmic contacts were again degraded. Auger electron spectroscopy (AES) depth profiles were used to investigate the interfacial reactions between the trilayer and GaN. AES results suggested that Pt plays a significant role in forming ohmic contact as an acceptor at the interface. Atomic force microscope (AFM) also showed that the samples with good ohmic contact have very smooth surface.


1994 ◽  
Vol 337 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
H. Barry Harrison

ABSTRACTThis paper briefly reviews the standard Transmission Line Model (TLM) commonly used to measure the specific contact resistance ρc and the sheet resistance Rsk beneath a planar ohmic contact. In the case of an alloyed ohmic contact, a more realistic three layer (Tri-Layer Transmission Line Model (TLTLM)) can be used for the analysis. This model is based on three layers (metal layer, alloyed semiconductor layer and the unalloyed semiconductor layer) and the two interfaces between them. By using appropriate TLTLM parameters, it is possible to calculate the sheet resistance Rsk that has been experimentally derived from the standard TLM. The new TLTLM model predicts that values of Rsk greater and less than Rsh (the unmodified epitaxial layer sheet resistance) are possible in agreement with experimentally reported observations.


2001 ◽  
Vol 680 ◽  
Author(s):  
K. O. Schweitz ◽  
T. G. Pribicko ◽  
S. E. Mohney ◽  
T. F. Isaacs-Smith ◽  
J. Williams ◽  
...  

ABSTRACTAs the group III nitride semiconductor technology matures, an increasing number of devices are being fabricated with high Al fraction AlGaN. In this study, ohmic behavior is achieved using Ti/Al/Pt/Au contacts to n-Al0.4Ga0.6N, which is the highest Al fraction for which ohmic contact formation has been reported. The effect of contact composition, pretreatment, and annealing conditions is studied by 30 s isochronal annealing experiments between 500°C and 1000°C. A specific contact resistance ρC of (5±3) × 10−5 ωcm2 is obtained using Ti(26 nm)/Al(74 nm)/Pt(50 nm)/Au(50 nm) contacts to n-Al0.4Ga0.6N annealed in N2 at 800°C; however, this value is shown to be artificially high because the metal sheet resistance RM is 4 ω/⊏ causing an artifact in the data analysis. All contacts with ρC < 10−3 ωcm2 exhibit a local minimum in ρC after annealing at 800°C. The observed increase in ρC upon annealing at 850°C and 900°C, however, is not an artifact originating from a change in RM. The top Au layer is found to play an active role in forming ohmic contacts with low ρC, since omitting the Au layer yields an increase in ρC of two orders of magnitude after annealing at 800°C. Furthermore, leaving out the Au layer requires an annealing temperature of 700°C to result in linear I-V curves for currents up to 100 µA, as opposed to 500°C when the Au layer is present. The role of Au is further studied in Ti(26 nm)/Al(74 nm)/Ni(50 nm)/Au(50 nm) contacts, where Rutherford backscattering spectroscopy reveals Ga in the metal layer and/or Au buried deeper than the original semiconductor-metal interface, and x-ray diffraction indicates the formation of new phases to happen concurrently with a decrease in ρC of three orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document