High Temperature Dielectric Properties of Sol-Gel Derived Thick PZT thin Films with Different Zr/Ti Atom Ratios

2001 ◽  
Vol 688 ◽  
Author(s):  
Jinrong Cheng ◽  
Wenyi Zhu ◽  
Nan Li ◽  
L.Eric Cross

AbstractPZT thin films of different thicknesses and Zr/Ti ratios of 60/40, 52/48 and 45/55 were coated onto platinized silicon substrates by using 2 methoxyethanol (2-MOE) based sol-gel spinon technique and crystallized with a rapid thermal annealing (RTA) process. XRD analysis revealed that thin PZT films exhibit random texture, while the thicker ones exhibit (100) texture, which was independent of composition. Dielectric constants and dissipation factors of PZT thin films were measured at elevated temperatures and as a function of frequency. For films with a thickness of ∼ 4 μm, the Curie points are at 350, 375 and 422°C for Zr/Ti ratios of 60/40, 52/48 and 45/55, respectively. All these films exhibit a high remnant polarization. A remnant polarization of 35 μC/cm2 had been achieved for the 60/40 films. No enhancement of the dielectric constant was observed in films with a composition close to MPB. The higher dielectric constant observed in films with the highest Zr content was explained by the concept of domain engineering.

1992 ◽  
Vol 271 ◽  
Author(s):  
G. Teowee ◽  
J. M. Boulton ◽  
D. R. Uhlmann

ABSTRACTA series of PZT precursor solutions was prepared which incorporated excess PbO to give the composition Pb1+xZr0.53Ti0.47O3+x, where 0 < × < 0.3. These solutions were spin coated on platinized Si wafers and fired at elevated temperatures up to 750C for 30 mins. After crystallization into single-phase perovskite, the films were studied using XRD, optical microscopy and electrical characterization techniques (hysteresis loops and dielectric properties). It was found that the presence of excess PbO significantly improved the PZT films in terms of phase assemblage, microstructure and electrical properties. Under optimized conditions, films with dielectric constants of around 3000 can be obtained.


1993 ◽  
Vol 310 ◽  
Author(s):  
Robert W. Schwartz ◽  
D. Dimos ◽  
S. J. Lockwood ◽  
V. M. Torres

AbstractThe successful development of PZT thin films for decoupling capacitor devices places stringent requirements on the dielectric and leakage properties of the films. We have characterized these properties for PZT thin films with compositions near the morphotropic phase boundary prepared by a sol-gel process. Capacitors were fabricated from films with thicknesses varying from 0.4 to 1.2 µm. For zero applied bias, the dielectric constants of these films were in the range of 800 to 1200. The room temperature dielectric constant was observed to decrease by ∼ 25% with the application of a 5 V bias. We have also characterized the interrelationships between temperature, applied bias, and dielectric constant. The capacitors exhibited asymmetry in their leakage and breakdown characteristics with bias sign, as well as non-linear I-V behavior. Breakdown fields for undoped PZT 53/47 films were typically in the range of 750 kV/cm.We have also studied the effects of La and Nb donor doping on the leakage behavior of PZT 50/50 thin films. Doping with 2 to 5 mol % of either La or Nb resulted in a reduction in film leakage current by a factor of 103. Leakage currents of the highly doped materials were approximately 2 × 10−9 A/cm2 under an applied field of ∼ 65 kV/cm at a temperature of 125×C.


1991 ◽  
Vol 243 ◽  
Author(s):  
D. Dimos ◽  
R.W. Schwartz

AbstractThe photocurrent responses, photo-induced changes in hysteresis behavior, and electrooptic (birefringence) effects of sol-gel derived PZT films have been characterized as part of an effort to evaluate ferroelectric films for image storage and processing applications.


2012 ◽  
Vol 569 ◽  
pp. 35-38
Author(s):  
Tao Zhang ◽  
Min Li ◽  
Ting Liu ◽  
Bin Sun ◽  
Sheng Nan Zhou

The high piezoelectricity and high mechanical quality factor thin films are very important for the fabrications of micro devices. The Pb(Zrx,Ti1-x)O3(PZT) thin films own high piezoelectricity, however, its mechanical quality factor is small. The proper doping of Pb(Mn1/3,Nb2/3)O3(PMnN) will perfectly improve the mechanical quality of the films. However, the doping of PMnN will change the dielectric property of PZT thin films, and so it’s very necessary to investigate the dielectric property of PZT thin films doped with different ratio of PMnN. In this paper, the Pb(Mn1/3,Nb2/3)O3- PbZrO3-PbTiO3(PMnN-PZT) thin films with different doping ratio of PMnN are deposited by the magnetron sputtering method, and the X-ray diffraction is applied to analyze the structure of thin films, and the relative dielectric constant are characterized by the LCR testing system. The results show that the PMnN-PZT thin films with smaller doping ratio than 20% exhibit polycrstal structure, and the dielectric constant of thin films increase with the doping ratio of PMnN sharply, especially the doped PMnN is smaller than 6 mol percent. All the dielectric constants decrease with the testing frequency, and which have little change if the testing frequency is larger than 2.5kHz.


1991 ◽  
Vol 224 ◽  
Author(s):  
Zheng Wu ◽  
Roberto Pascual ◽  
C.V.R. Vasant Kumar ◽  
David Amd ◽  
Michael Sayer

AbstractThe preparation of ferroelectric lead zirconate titanate (PZT) thin films by rapid thermal processing (RTP) is reported. The films were deposited by chemical sol gel and physical sputter techniques. The heating rate of RTP was found to have significant influence on the crystallization behavior. Faster heating rates lead to lowering of the crystallization temperature and reduction of grain size. PZT films were obtained with dielectric constants ~ 1000, remanent polarizations between 20 and 30μC/cm2, coercive fields 20 to 60kV/cm, and no significant fatigue for 109 to 1010 stressing cycles.


1998 ◽  
Vol 541 ◽  
Author(s):  
H. Fujisawa ◽  
S. Nakashima ◽  
M. Shimizu ◽  
H. Niu

AbstractThe grain size of MOCVD-Pb(Zr,Ti)O3 (PZT) thin films was successfully controlled by changing the grain size of Ir bottom electrodes and by changing the growth rate of PZT films. In Ir/PZT/Ir/SiO2/Si capacitors, the grain size of PZT thin films increased from 120 to 240nm as the grain size of bottom Ir electrodes increased from 50 to 200nm. The dielectric constants of PZT thin films increased from 760 to 1440 as the grain size increased from 120 to 240nm. Remanent polarization increased and coercive field decreased as the grain size increased. This dependence of electrical properties on the grain size coincided with that of ceramics.


Author(s):  
Daqun Bao ◽  
Yi Zhang ◽  
Hang Guo

This paper presents the growth and characterization of PZT thin films by using the sol-gel technology. In this paper, we study the influences of annealing process and different substrates on the orientation and crystalline quality of PZT thin films. The crystallographic structures are tested by using X-ray diffractometer (XRD), and the residual stresses of PZT thin films are obtained by calculation from a derived stress-strain equation in XRD analysis. Moreover, surface morphology and microstructure of the films are investigated by using AFM and SEM, and the polarization hysteresis of PZT thin films is measured by using a Sawyer Tower circuit. The results show that PZT thin films prepared by using the sol-gel method have good properties and can be used for developing PZT-based micro and nano devices.


2007 ◽  
Vol 14 (02) ◽  
pp. 229-234
Author(s):  
SARAWUT THOUNTOM ◽  
MANOCH NAKSATA ◽  
KENNETH MACKENZIE ◽  
TAWEE TUNKASIRI

Lead zirconate titanate (PZT) films with compositions near the morphotropic phase boundary were fabricated on Pt (111)/ Ti / SiO 2/ Si (100) using the triol sol–gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties, and ferroelectric properties of the PZT thin films was investigated. Randomly oriented PZT thin films pre-heated at 400°C for 10 min and annealed at 600°C for 30 min showed well-defined ferroelectric hysteresis loops with a remnant polarization of 26.57 μC/cm2 and a coercive field of 115.42 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free, and homogeneous with fine grains about 15–20 nm in size.


2011 ◽  
Vol 277 ◽  
pp. 1-10 ◽  
Author(s):  
D. Fasquelle ◽  
M. Mascot ◽  
J.C. Carru

This paper reports a study of Ba0.9Sr0.1TiO3films deposited on Pt/Ti/SiO2/Si substrates. The annealing temperatures were 750°C, 850°C and 950°C. An increase of the average size of grains was observed, from 60 nm at 750°C to 110 nm at 950°C, as well as an increase of the dielectric constant, remnant polarization and tunability. When the annealing time was decreased from 1 hour to 15 min, the dielectric constant and remnant polarization values have been increased. The optimized annealing conditions (950°C for 15 min) give the following results: εr= 780 and tgδ = 0.01 at 100 kHz, Pr = 13 µC/cm², Ec = 63 kV/cm and a tunability of 55%.


1990 ◽  
Vol 200 ◽  
Author(s):  
W.H. Shepherd

ABSTRACTTypical fatigue and aging characteristics are reported for thin PZT films prepared using sol-gels. The fatigue process occurs in two steps. There is an initial period, during which the domain matrix of the as formed film is restructured by the cycling and the polarization generally increases, followed by a period in which the polarization decays. The polarization decay may be due, in part, to the formation of dielectric layers at the electrodes. The effects of voltage and temperature on fatigue are reported. Aging is examined as a function of temperature. Measurements of internal bias fields do not support the view that they are the primary cause of aging. Neither fatigue nor aging are temperature sensitive making identification of specific physical processes difficult.


Sign in / Sign up

Export Citation Format

Share Document