Rapid Thermal Processing of Ferroelectric Thin Films

1991 ◽  
Vol 224 ◽  
Author(s):  
Zheng Wu ◽  
Roberto Pascual ◽  
C.V.R. Vasant Kumar ◽  
David Amd ◽  
Michael Sayer

AbstractThe preparation of ferroelectric lead zirconate titanate (PZT) thin films by rapid thermal processing (RTP) is reported. The films were deposited by chemical sol gel and physical sputter techniques. The heating rate of RTP was found to have significant influence on the crystallization behavior. Faster heating rates lead to lowering of the crystallization temperature and reduction of grain size. PZT films were obtained with dielectric constants ~ 1000, remanent polarizations between 20 and 30μC/cm2, coercive fields 20 to 60kV/cm, and no significant fatigue for 109 to 1010 stressing cycles.

1999 ◽  
Vol 14 (2) ◽  
pp. 494-499 ◽  
Author(s):  
S. Arscott ◽  
R. E. Miles ◽  
J. D. Kennedy ◽  
S. J. Milne

0.53Ti0.47)O3 have been prepared on platinized GaAs (Pt–GaAs) substrates using a new 1,1,1-tris(hydroxymethyl)ethane (THOME) based sol-gel technique. Rapid thermal processing (RTP) techniques were used to decompose the sol-gel layer to PZT in an effort to avoid problems of GayAs outdiffusion into the PZT. A crystalline PZT film was produced by firing the sol-gel coatings at 600 or 650 ° for a dwell time of 1 s using RTP. A single deposition of the precursor sol resulted in a 0.4 μm thick PZT film. X-ray diffraction measurements revealed that the films possessed a high degree of (111) preferred orientation. Measured average values of remanent polarization (Pr ) and coercive field (Ec) for the film annealed at 650 ° for 1 s were 24 μC/cm2 and 32 kV/cm, respectively, together with a low frequency dielectric constant and loss tangent at 1 kHz of 950 and 0.02. These values are comparable to those obtainable on platinized silicon (Pt–Si) substrates using conventional sol-gel methods, and are an improvement on PZT thin films prepared on platinized GaAs using an earlier sol-gel route based on 1,3-propanediol.


2007 ◽  
Vol 14 (02) ◽  
pp. 229-234
Author(s):  
SARAWUT THOUNTOM ◽  
MANOCH NAKSATA ◽  
KENNETH MACKENZIE ◽  
TAWEE TUNKASIRI

Lead zirconate titanate (PZT) films with compositions near the morphotropic phase boundary were fabricated on Pt (111)/ Ti / SiO 2/ Si (100) using the triol sol–gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties, and ferroelectric properties of the PZT thin films was investigated. Randomly oriented PZT thin films pre-heated at 400°C for 10 min and annealed at 600°C for 30 min showed well-defined ferroelectric hysteresis loops with a remnant polarization of 26.57 μC/cm2 and a coercive field of 115.42 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free, and homogeneous with fine grains about 15–20 nm in size.


1999 ◽  
Vol 596 ◽  
Author(s):  
Zhenshan Zhang ◽  
Jeong Hwan Park ◽  
Susan Trolier-McKinstry

AbstractIn this work, highly (001)pc-oriented thin films of LaNiO3 (LNO) were deposited by DC magnetron sputtering onto Si substrates (pc = pseudocubic indices). The target powder was prepared using a molten salt technique with Na2CO3 as a flux. The final target density was greater than 85% of theoretical density. The best results were obtained when sputtering was carried out at a power of 186 W and a working pressure of 45 mtorr with a gas composition of 50% O2 + 50% Ar. The thickness of the deposited films was proportional to the sputtering time, and the growth rate was 300Å/hour. Highly (001)-oriented thin films of lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) and Pb[(Mg1/3Nb2/3)0.7Ti0.3]O3 (PMN-PT) were fabricated by a sol-gel method on (001)-textured LNO metallic oxide electrodes. A remanent polarization of 12 μC/cm2 and d31 of -125 pC/N (assuming a Young's modulus of 35 GPa) were measured on the PMN-PT thin films with a thickness of 0.9 μm. This piezoelectric coefficient considerably exceeds that available from PZT films, and depends critically on the film orientation. Changes in the hysteresis loop due to externally applied stress will also be described.


1991 ◽  
Vol 6 (10) ◽  
pp. 2208-2217 ◽  
Author(s):  
Cheng-Chen Hsueh ◽  
Martha L. Mecartney

A systematic investigation of the microstructural evolution of fast fired, sol-gel derived Pb(Zr, Ti)O3 films (Zr/Ti = 54/46) was performed by analytical transmission electron microscopy (TEM). It was found that the nucleation and growth of the sol-gel PZT films were influenced by the precursor chemistry. The precursor solution was composed of Pb 2-ethylhexanoate, Ti isopropoxide, and Zr n-propoxide in n-propanol. Porous and spherulitic perovskite grains nucleated and grew from a pyrochlore matrix for NH4OH-modified films, but no chemical segregation was found. These thin films consisted completely of porous spherulitic PZT grains (∼2 μm) when the firing temperature was increased. Chemical phase separation with regions of Zr-rich pyrochlore particles separated by Zr-deficient perovskite grains was observed in the initial stages of nucleation and growth for CH3COOH-modified PZT films. This phase separation is attributed to the effect of acetate ligands on the modification of molecular structure of the PZT precursor. Firing the acid-modified films at higher temperatures for long times resulted in porous perovskite grain structures. The residual porosity in these films is suggested to be a result of differential evaporation/condensation rates during the deposition process and the gas evolution at high temperatures due to trapped organics in the films. Dielectric and ferroelectric properties were correlated to the microstructure of the films. Lower dielectric constants (∼500) and higher coercive fields (∼65 kV/cm) were found for the acid-modified PZT films with phase separation in comparison to those measured from the sol-gel films with a uniform microstructure (∽ > 600, Ec < 50 kV/cm). All films fired at 650 °C showed relatively good remanent polarization on the order of 20 μC/cm2.


2007 ◽  
Vol 280-283 ◽  
pp. 239-242 ◽  
Author(s):  
Wen Gong ◽  
Xiang Cheng Chu ◽  
Jing Feng Li ◽  
Zhi Lun Gui ◽  
Long Tu Li

Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary were deposited on silicon wafers by using a modified sol-gel method. Introducing a seeding layer between the interface of PZT film and platinum electrode controlled the texture of PZT films. The lead oxide seeding layer results in highly (001)-textured PZT film, while the titanium dioxide seeding layer results in (111)-textured one. SEM and XRD were used to characterize the PZT thin films. The ferroelectric and piezoelectric properties of the PZT films were evaluated and discussed in association with different preferential orientations.


1994 ◽  
Vol 361 ◽  
Author(s):  
E.M. Griswold ◽  
L. Weaver ◽  
I.D. Calder ◽  
M. Sayer

ABSTRACTRapid thermal processing (RTP) has been used to examine the crystallization kinetics of lead zirconate titanate (PZT) fabricated using a sol gel process. Depth profiling of PZT films was performed with glancing angle x-ray diffraction and transmission electron microscopy. The films were annealed using RTP ramp rates from 10°C/s to 200°C/s and hold temperatures from 525°C to 650°C. The effect of ramp rate on the phase transformation is presented, and the growth of oriented columnar structures is demonstrated. Films subjected to RTP at 650°C for 1s using a ramp of 10°C/s began to transform to perovskite and were ferroelectric while a ramp of 100°C/s (same hold) produced a linear material which was pyrochlore. Longer hold conditions such as 650°C for 30s produced ferroelectric films with Pr in excess of 20μC/cm2 and relative permittivities ε > 600.


1999 ◽  
Vol 596 ◽  
Author(s):  
Zhan-jie Wang ◽  
Ryutaro Maeda ◽  
Kaoru Kikuchi

AbstractLead zirconate titanate (PZT) thin films were fabricated by a three-step heat-treatment process which involves the addition of -10, 0 and 10 mol% excess Pb to the starting solution and spin coating onto Pt/Ti/SiO2/Si substrates. Crystalline phases as well as preferred orientations in PZT films were investigated by X-ray diffraction analysis (XRD). The microstructure and composition of the films were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), respectively. The well-crystallized perovskite phase and the (100) preferred orientation were obtained by adding 10% excess Pb to the starting solution. It was found that PZT films to which 10% excess Pb was added had better electric properties. The remanent polarization and the coercive field of this film were 34.8 μC/cm2 and 41.7 kV/cm, while the dielectric constant and loss values measured at 1 kHz were approximately 1600 and 0.04, respectively. Dielectric and ferroelectric properties were correlated to the microstructure of the films.


1991 ◽  
Vol 223 ◽  
Author(s):  
Thomas M. Graettinger ◽  
O. Auciello ◽  
M. S. Ameen ◽  
H. N. Al-Shareef ◽  
K. Gifford ◽  
...  

ABSTRACTFerroelectric oxide films have been studied for their potential application as integrated optical materials and nonvolatile memories. Electro-optic properties of potassium niobate (KNbO3) thin films have been measured and the results correlated to the microstructures observed. The growth parameters necessary to obtain single phase perovskite lead zirconate titanate (PZT) thin films are discussed. Hysteresis and fatigue measurements of the PZT films were performed to determine their characteristics for potential memory devices.


2002 ◽  
Vol 748 ◽  
Author(s):  
C. L. Zhao ◽  
Z. H. Wang ◽  
W. Zhu ◽  
O. K. Tan ◽  
H. H. Hng

ABSTRACTLead zirconate titanate (PZT) films are promising for acoustic micro-devices applications because of their extremely high electromechanical coupling coefficients and excellent piezoelectric response. Thicker PZT films are crucial for these acoustic applications. A hybrid sol-gel technology has been developed as a new approach to realize simple and cost-effective fabrication of high quality PZT thick films. In this paper, PZT53/47 thick films with a thickness of 5–50 μm are successfully deposited on Pt-coated silicon wafer by using the hybrid sol-gel technology. The obtained PZT thick films are dense, crack-free, and have a nano-sized microstructure. The processing parameters of this technology have been evaluated. The microstructure of the film has been observed using field-emission scanning electron microscopy and the crystallization process has been monitored by the X-ray diffraction. The thick films thus made are good candidates for fabrication of piezoelectric diaphragm which will be an essential element of microspeaker and microphone arrays.


Sign in / Sign up

Export Citation Format

Share Document