Thermoelectric Properties of Bi1-xSbx Nanowire Arrays

2001 ◽  
Vol 691 ◽  
Author(s):  
Yu-Ming Lin ◽  
Stephen B. Cronin ◽  
Oded Rabin ◽  
Jackie Y. Ying ◽  
Mildred S. Dresselhaus

ABSTRACTWe present here a thermoelectric transport property study of Bi1−xSbx alloy nanowires embedded in a dielectric matrix. Temperature-dependent resistance measurements exhibit nonmonotonic trends as the antimony mole fraction (x) increases, and a theoretical model is presented to explain the features that are related to the unusual band structure of Bi1−xSbx systems. Seebeck coefficient measurements are performed on nanowires with different diameters and compositions, showing enhanced thermopower over bulk Bi. The magneto-Seebeck coefficient of these nanowires also exhibits an unusual field dependence that is absent in bulk samples.

2001 ◽  
Vol 679 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTThe pressure filling of anodic alumina templates with molten bismuth has been used to synthesize single crystalline bismuth nanowires with diameters ranging from 7 to 200nm and lengths of 50μm. The nanowires are separated by dissolving the template, and electrodes are affixed to single Bi nanowires on Si substrates. A focused ion beam (FIB) technique is used first to sputter off the oxide from the nanowires with a Ga ion beam and then to deposit Pt without breaking vacuum. The resistivity of a 200nm diameter Bi nanowire is found to be only slightly greater than the bulk value, while preliminary measurements indicate that the resistivity of a 100nm diameter nanowire is significantly larger than bulk. The temperature dependence of the resistivity of a 100nm nanowire is modeled by considering the temperature dependent band parameters and the quantized band structure of the nanowires. This theoretical model is consistent with the experimental results.


1999 ◽  
Vol 582 ◽  
Author(s):  
Y. M. Lin ◽  
X. Sun ◽  
S. B. Cronin ◽  
Z. Zhang ◽  
J. Y. Ying ◽  
...  

ABSTRACTTe-doped Bi nanowires with a 40 nm wire diameter have been successfully synthesized in anodic alumina templates by the pressure injection technique. Due to the unique semimetal-semiconductor transition that occurs in Bi nanowires, these systems exhibit a rather different temperature dependence in transport properties from their bulk counterparts. An improved theoretical model of this unique 1D nanowire system is developed based on the band structure of bulk bismuth. The temperature dependence of resistance for Bi nanowire arrays have been studied experimentally for various Te dopant concentrations and the results are compared with theoretical predictions.


2009 ◽  
Vol 6 (5) ◽  
pp. 993-996 ◽  
Author(s):  
Kojiro Mimura ◽  
Takahiko Ishizu ◽  
Kazuya Yamamoto ◽  
Junta Takasu ◽  
Yuri Yonehira ◽  
...  

2021 ◽  
Vol 317 ◽  
pp. 28-34
Author(s):  
Joon Hoong Lim

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.


Nanoscale ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 1481-1486 ◽  
Author(s):  
Neimantas Vainorius ◽  
Simon Kubitza ◽  
Sebastian Lehmann ◽  
Lars Samuelson ◽  
Kimberly A. Dick ◽  
...  

Temperature dependence of the indicated transitions in wurtzite GaAs.


2018 ◽  
Vol 85 (3) ◽  
Author(s):  
Tianbao Cheng ◽  
Daining Fang ◽  
Yazheng Yang

Knowledge of the ideal shear strength of solid single crystals is of fundamental importance. However, it is very hard to determine this quantity at finite temperatures. In this work, a theoretical model for the temperature-dependent ideal shear strength of solid single crystals is established in the view of energy. To test the drawn model, the ideal shear properties of Al, Cu, and Ni single crystals are calculated and compared with that existing in the literature. The study shows that the ideal shear strength first remains approximately constant and then decreases almost linearly as temperature changes from absolute zero to melting point. As an example of application, the “brittleness parameter” of solids at elevated temperatures is quantitatively characterized for the first time.


2021 ◽  
Vol 104 (20) ◽  
Author(s):  
Muhammad Gaffar ◽  
Sasfan Arman Wella ◽  
Eddwi Hesky Hasdeo

Sign in / Sign up

Export Citation Format

Share Document